数学基础:HUD1124-Factorial(N!末尾0的个数)
Factorial
Problem Description
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called “Travelling Salesman Problem” and it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4….N. The number is very high even for a relatively small N.
The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour of the factorial function.
For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1
Input
There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.
Output
For every number N, output a single line containing the single non-negative integer Z(N).
Sample Input
6
3
60
100
1024
23456
8735373
Sample Output
0
14
24
253
5861
2183837
解题心得:
- 题意就是叫你算N!的答案末尾有多少个0,很水的题,别人的分析很好我就引用一下就不写分析了。
分析:题目要求解的是N阶乘的结果有多少个0?(1<=N<=1000000000)
注意一下几个方面:
1、任何一个自然数都可分解质因数。N!=1*2*3*(2*2)5(2*3)*…*N=2^a*3^b*5^c*7^d……=(2*5)^c*2^(a-c)*3^b*7^d……=10^c*2^(a-c)*3^b*7^d……2、两数相乘产生0,是因为2和5相乘。又由于在分解质因数时小的质数的幂次一定>=大的质数的幂次,在N!中2的个数显然大于5的个数,故解决该题转化成找出N!中5的幂次。
3、如何找出5的幂次呢?其实就是 N!中:是5的倍数的数+是5^2的倍数的数+5^3的倍数的数+…..
如50!中:
含有10个5的倍数的数:5,15,20,25,30,35,40,45,50 [50/5=10]
含有2个5^2的倍数的数:25,50 [50/(5^2)=2]
可见N!中一共有12个5相乘,那么N!结果中的0也必有12个。
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long n;
int t;
cin>>t;
while(t--)
{
cin>>n;
long long sum = 0;
while(n)
{
sum += n / 5;
n /= 5;
}
printf("%lld\n",sum);
}
return 0;
}
数学基础:HUD1124-Factorial(N!末尾0的个数)的更多相关文章
- 【CodeChef】Factorial(n!末尾0的个数)
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transcei ...
- POJ 1401:Factorial 求一个数阶乘的末尾0的个数
Factorial Time Limit: 1500MS Memory Limit: 65536K Total Submissions: 15137 Accepted: 9349 Descri ...
- Java 计算N阶乘末尾0的个数-LeetCode 172 Factorial Trailing Zeroes
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in ...
- N的阶乘末尾0的个数和其二进制表示中最后位1的位置
问题一解法: 我们知道求N的阶乘结果末尾0的个数也就是说我们在从1做到N的乘法的时候里面产生了多少个10, 我们可以这样分解,也就是将从0到N的数分解成因式,再将这些因式相乘,那么里面有多少个 ...
- LightOj 1090 - Trailing Zeroes (II)---求末尾0的个数
题目链接:http://lightoj.com/volume_showproblem.php?problem=1090 题意:给你四个数 n, r, p, q 求C(n, r) * p^q的结果中末尾 ...
- 神秘常量复出!用0x077CB531计算末尾0的个数 -- De Bruijn 序列
http://www.matrix67.com/blog/archives/3985 神秘常量复出!用0x077CB531计算末尾0的个数 大家或许还记得 Quake III 里面的一段有如天书般的代 ...
- Algorithm --> 求阶乘末尾0的个数
求阶乘末尾0的个数 (1)给定一个整数N,那么N的阶乘N!末尾有多少个0?比如:N=10,N!=3628800,N!的末尾有2个0. (2)求N!的二进制表示中最低位为1的位置. 第一题 考虑哪些数相 ...
- 求N的阶乘N!中末尾0的个数
求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正 ...
- 牛客小白月赛6 水题 求n!在m进制下末尾0的个数 数论
链接:https://www.nowcoder.com/acm/contest/135/C来源:牛客网 题目描述 其中,f(1)=1;f(2)=1;Z皇后的方案数:即在Z×Z的棋盘上放置Z个皇后,使其 ...
随机推荐
- Vnc在Ubuntu14.04上的安装和配置 安装:
安装: Ubuntu14.04 : sudo apt-get install vnc4server : sudo apt-get install xrdp iPad : 安装 vnc viewer 或 ...
- sql 2008 中不能创建数据库关系图
执行以下命令: ALTER AUTHORIZATION ON DATABASE::[databasename] TO sa [databasename] 为数据库名: 此方法借鉴于<老高> ...
- Kendo UI 模板概述
Kendo UI 模板概述 Kendo UI 框架提供了一个易用,高性能的 JavaScript 模板引擎.通过模板可以创建一个 HTML 片段然后可以和 JavaScript 数据合并成最终的 HT ...
- javascript结合nodejs实现多文件上传
前端文件上传功能比较依赖后端,所以第一步用nodejs实现一个供文件上传的功能接口. 因为本人对nodejs也是一知半解,所以刚开始的想法是像原始的ajax交互那样,获取上传文件的内容,然后再通过no ...
- Godaddy虚拟主机新建mysql数据库 2019最新
第一次用狗爹,完全摸不着路子. 网站本地已搭建,不知道数据库是在哪里上传. 百度搜索结果都是四五年前的旧内容,耽误时间. 还是问客服,Godaddy的客服确实不赖 godaddy虚拟主机如何新建数据库 ...
- Ubuntu 自动获取ip地址
$ sudo dhclient -r //release ip 释放IP$ sudo dhclient //获取IP手動使用 DHCP 自 ...
- Viewcontroller基类
#import <UIKit/UIKit.h> #import "YQZMutableArray.h" @interface YQZViewController : U ...
- python中__file__
用__file__ 来获得脚本所在的路径,比如文件在/root下 cat tee #!/usr/bin/env pythonprint __file__ #得到相对路径tee ...
- datatables添加长按事件
长按事件 $.fn.longPress = function (fn) { var timeout = undefined; var $this = this; for (var i = 0; i & ...
- 深入理解Java流机制(一)
一.前言 C语言本身没有输入输出语句,而是调用"stdio.h"库中的输入输出函数来实现.同样,C++语言本身也没有输入输出,不过有别于C语言,C++有一个面向对象的I/O流类库& ...