【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin

Description

有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢走c[i]元。作为保安,你在每一段长度为1的时间内最多只能制止一个强盗,那么你最多可以挽回多少损失呢?

Input

第一行包含一个正整数n(1<=n<=5000),表示强盗的个数。
接下来n行,每行包含三个正整数a[i],b[i],c[i](1<=a[i]<b[i]<=5000,1<=c[i]<=10000),依次描述每一个强盗。

Output

输出一个整数,即可以挽回的损失的最大值。

Sample Input

4
1 4 40
2 4 10
2 3 30
1 3 20

Sample Output

90

题解:建图方法很简单,直接上了:

1.S -> 每个时间点i  费用0,容量1
2.[a,b]中的所有时间点 -> 盗贼j 费用0,容量1
3.盗贼j -> T 费用c,容量1

发现边数太多,用线段树优化建图即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#define lson x<<1
#define rson x<<1|1
using namespace std;
int S,T,cnt,n,m,now,ans,L,R;
int to[3000000],next[3000000],cost[3000000],flow[3000000],head[100000],dis[100000],inq[100000];
int pv[100000],pe[100000],A[100000],B[100000],C[100000];
queue<int> q;
void add(int a,int b,int c,int d)
{
to[cnt]=b,cost[cnt]=c,flow[cnt]=d,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,cost[cnt]=-c,flow[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
void build(int l,int r,int x)
{
if(l==r)
{
add(S,x,0,1),now=max(now,x);
return ;
}
int mid=l+r>>1;
build(l,mid,lson),build(mid+1,r,rson);
add(lson,x,0,mid-l+1),add(rson,x,0,r-mid);
}
void updata(int l,int r,int x,int a,int b)
{
if(a<=l&&r<=b)
{
add(x,now,0,1);
return ;
}
int mid=l+r>>1;
if(a<=mid) updata(l,mid,lson,a,b);
if(b>mid) updata(mid+1,r,rson,a,b);
}
int bfs()
{
memset(dis,0x3f,sizeof(dis));
int i,u;
dis[S]=0,q.push(S);
while(!q.empty())
{
u=q.front(),q.pop(),inq[u]=0;
for(i=head[u];i!=-1;i=next[i])
{
if(dis[to[i]]>dis[u]+cost[i]&&flow[i])
{
dis[to[i]]=dis[u]+cost[i],pv[to[i]]=u,pe[to[i]]=i;
if(!inq[to[i]]) inq[to[i]]=1,q.push(to[i]);
}
}
}
return dis[T]<0x3f3f3f3f;
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,a,b,c;
S=0,L=5000,R=1;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++) A[i]=rd(),B[i]=rd()-1,C[i]=-rd(),L=min(L,A[i]),R=max(R,B[i]);
build(L,R,1);
T=n+now+1;
for(i=1;i<=n;i++) now++,updata(L,R,1,A[i],B[i]),add(now,T,C[i],1);
while(bfs())
{
int mf=1<<30;
for(i=T;i!=S;i=pv[i]) mf=min(mf,flow[pe[i]]);
ans+=mf*dis[T];
for(i=T;i!=S;i=pv[i]) flow[pe[i]]-=mf,flow[pe[i]^1]+=mf;
}
printf("%d",-ans);
return 0;
}

【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流的更多相关文章

  1. BZOJ_4276_[ONTAK2015]Bajtman i Okrągły Robin_线段树优化建图+最大费用最大流

    BZOJ_4276_[ONTAK2015]Bajtman i Okrągły Robin_线段树优化建图+最大费用最大流 Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1 ...

  2. BZOJ 4276: [ONTAK2015]Bajtman i Okrągły Robin [线段树优化建边]

    4276: [ONTAK2015]Bajtman i Okrągły Robin 题意:\(n \le 5000\)个区间\(l,r\le 5000\),每个区间可以选一个点得到val[i]的价值,每 ...

  3. BZOJ4276 : [ONTAK2015]Bajtman i Okrągły Robin

    建立线段树, S向每个叶子连边,容量1,费用0. 孩子向父亲连边,容量inf,费用0. 每个强盗向T连边,容量1,费用为c[i]. 对应区间内的点向每个强盗,容量1,费用0. 求最大费用流即可. #i ...

  4. [ONTAK2015]Bajtman i Okrągły Robin

    bzoj 4276: [ONTAK2015]Bajtman i Okrągły Robin Time Limit: 40 Sec  Memory Limit: 256 MB Description 有 ...

  5. 4276: [ONTAK2015]Bajtman i Okrągły Robin

    4276: [ONTAK2015]Bajtman i Okrągły Robin Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 345  Solved ...

  6. BZOJ 4276: [ONTAK2015]Bajtman i Okrągły Robin

    最大权值匹配,贪心匈牙利即可. 检查一些人是否能被全部抓住可以采用左端点排序,右端点优先队列处理. By:大奕哥 #include<bits/stdc++.h> using namespa ...

  7. BZOJ 4276 [ONTAK2015]Bajtman i Okrągły Robin 费用流+线段树优化建图

    Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i]]这么多段长度为1时间中选出一个时间进行抢劫,并计划抢 ...

  8. bzoj 4276: [ONTAK2015]Bajtman i Okrągły Robin【线段树+最大费用最大流】

    --因为T点忘记还要+n所以选小了所以WA了一次 注意!题目中所给的时间是一边闭一边开的区间,所以读进来之后先l++(或者r--也行) 线段树优化建图,很神.(我记得还有个主席树优化建树的?)首先考虑 ...

  9. Bajtman i Okrągły Robin

    Bajtman i Okrągły Robin 题目描述 你是一个保安,你发现有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2],...,[b[i]-1,b[i] ...

随机推荐

  1. 转载——C# 6.0可能的新特性及C#发展历程

    据扯,C# 6.0在不远的将来就发布了,对应的IDE可能是VS 2014(.Net Framework 5.0),因为VS 2013已于2013年10月份发布了,对应的是.Net Franework ...

  2. C# 键值对的类型

    一 C# 键值对类有以下类: ①    IDictionary<string, Object> idc = new Dictionary<string, object>(); ...

  3. 最短Hamilton路径

    题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每 ...

  4. ActiveMQ 翻译第一章 1.2小节(松耦合与ActiveMQ和何时使用ActiveMQ)

    第一章 1.2.1小节  松耦合与ActiveMQ ActiveMQ为应用程序架构提供送耦合实现组件.松耦合经常被引入到系统架构中,来减轻紧耦合的远程工程调用的使用.松耦合的设计是异步的,来自其他系统 ...

  5. Android-Handler消息机制实现原理

    一.消息机制流程简介 在应用启动的时候,会执行程序的入口函数main(),main()里面会创建一个Looper对象,然后通过这个Looper对象开启一个死循环,这个循环的工作是,不断的从消息队列Me ...

  6. UICollectionView专题

    什么是UICollectionView UICollectionView是一种新的数据展示方式,简单来说可以把他理解成多列的UITableView(请一定注意这是UICollectionView的最最 ...

  7. xshell登录到CentOS7上时出现“The remote SSH server rejected X11 forwarding request.

    其原因是肯能对openssh版本进行了升级. 解决方法为:         yum install xorg-x11-font* xorg-x11-xauth        /etc/ssh/sshd ...

  8. python GIL

    https://www.cnblogs.com/MnCu8261/p/6357633.html 全局解释器锁,同一时间只有一个线程获得GIL,

  9. GIS可视化——属性图

    一.简介 SuperMap iClient for JavaScript 提供了UTFGrid图层(属性图),用于客户端属性信息的快速交互. UTFGrid图层从UTFGrid切片数据源读取数据,其本 ...

  10. 使用struts2完成ckeditor和图片上传

    代码地址如下:http://www.demodashi.com/demo/12427.html 使用struts2完成ckeditor和ckeditor图片上传 ckeditor版本ckeditor_ ...