bzoj 1954 & poj 3764 The xor-longest Path dfs+Trie
题目大意
给定一棵n个点的带权树,求树上最长的异或和路径
题解
因为\(xor\)操作满足可结合性,所以有
\(a\text{ }xor\text{ }b\text{ }xor\text{ }b = a\)
那么我们可以计算出每个点到根的xor距离,设为\(dis\)
那么我们知道\(dis_u\text{ }xor\text{ }dis_v\)即\(u,v\)之间的距离的xor值
所以我们把所有的\(dis\)插到01Trie里,再对每个\(dis\)值求最大即可
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 100010;
struct Edge{
int to,next,dis;
}G[maxn<<1];
int head[maxn],cnt;
void add(int u,int v,int d){
G[++cnt].to = v;
G[cnt].next = head[u];
head[u] = cnt;
G[cnt].dis = d;
}
inline void insert(int u,int v,int d){
add(u,v,d);add(v,u,d);
}
int dis[maxn];
#define v G[i].to
void dfs(int u,int fa){
for(int i = head[u];i;i=G[i].next){
if(v == fa) continue;
dis[v] = dis[u]^G[i].dis;
dfs(v,u);
}
}
#undef v
int ch[maxn*32][2],nodecnt;
bool ed[maxn*32];
inline void insert(int x){
int nw = 0;
for(int i = 31;i;--i){
int id = (bool)(x & (1 << (i-1)));
if(ch[nw][id] == 0) ch[nw][id] = ++nodecnt;
nw = ch[nw][id];
}ed[nw] = true;
}
inline int query(int x){
int ret = 0,nw = 0;
for(int i=31;i;--i){
int id = (bool)(x & (1 << (i-1)));
if(ch[nw][id^1] != 0){
ret |= (1<<(i-1));
nw = ch[nw][id^1];
}else nw = ch[nw][id];
}return ret;
}
inline void init(){
memset(head,0,sizeof head);
memset(ch,0,sizeof ch);
memset(ed,0,sizeof ed);
memset(dis,0,sizeof dis);
cnt = nodecnt = 0;
}
int main(){
int n;
while(scanf("%d",&n) != EOF){
init();
int u,v,d;
for(int i=1;i<n;++i){
read(u);read(v);read(d);
insert(u,v,d);
}dfs(1,0);
for(int i=1;i<=n;++i) insert(dis[i]);
int ans = 0;
for(int i=1;i<=n;++i){
ans = max(ans,query(dis[i]));
}printf("%d\n",ans);
}
getchar();getchar();
return 0;
}
bzoj 1954 & poj 3764 The xor-longest Path dfs+Trie的更多相关文章
- 【POJ 3764】The Xor-longest Path
题目 给定一个\(n\)个点的带权无根树,求树上异或和最大的一条路径. \(n\le 10^5\) 分析 一个简单的例子 相信大家都做过这题: 给定一个\(n\)个点的带权无根树,有\(m\)个询问, ...
- 【POJ 3764】 The xor-longest path
[题目链接] http://poj.org/problem?id=3764 [算法] 首先,我们用Si表示从节点i到根的路径边权异或和 那么,根据异或的性质,我们知道节点u和节点v路径上的边权异或和就 ...
- poj3764 The XOR Longest Path【dfs】【Trie树】
The xor-longest Path Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10038 Accepted: ...
- 题解 bzoj1954【Pku3764 The xor – longest Path】
做该题之前,至少要先会做这道题. 记 \(d[u]\) 表示 \(1\) 到 \(u\) 简单路径的异或和,该数组可以通过一次遍历求得. \(~\) 考虑 \(u\) 到 \(v\) 简单路径的异或和 ...
- POJ 3764 - The xor-longest Path - [DFS+字典树变形]
题目链接:http://poj.org/problem?id=3764 Time Limit: 2000MS Memory Limit: 65536K Description In an edge-w ...
- poj 3764 The xor-longest Path(字典树)
题目链接:poj 3764 The xor-longest Path 题目大意:给定一棵树,每条边上有一个权值.找出一条路径,使得路径上权值的亦或和最大. 解题思路:dfs一遍,预处理出每一个节点到根 ...
- Solve Longest Path Problem in linear time
We know that the longest path problem for general case belongs to the NP-hard category, so there is ...
- Why longest path problem doesn't have optimal substructure?
We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...
- POJ 3764 DFS+trie树
题意: 给你一棵树,求树中最长的xor路径.(n<=100000) 思路: 首先我们知道 A xor B =(A xor C) xor (B xor C) 我们可以随便选一个点DFS 顺便做出与 ...
随机推荐
- LeetCode 之 Valid Palindrome(字符串)
[问题描写叙述] Given a string, determine if it is a palindrome, considering only alphanumeric characters a ...
- HTML5之Canvas绘图(一) ——基础篇
HTML5火的正热,最近有个想法也是要用到HTML的相关功能,所以也要好好学习一把. 好好看了一下Canvas的功能,感觉HTML5在客户端交互的功能性越来越强了,今天看了一下Canvas绘图,下边是 ...
- emacs 简记
简介 Emacs作为神的编辑器,不用介绍了吧,说点感受. 用了一段时间了,总体感觉其实Emacs是很简单的,甚至比vim还简单,因为在X环境下,打开后可以就像记事本一样使用.但是,使用Emacs的人一 ...
- Tomcat 7.0 servlet @WebServlet
在使用tomcat7.0+eclipse j2ee时,新建Dynamic Web Project时, 会让选择是否生成web.xml.无论选择与否,此时新建一个servlet, 可以不在web.xml ...
- JavaScritpt的DOM初探之Node(一)
DOM(文档对象模型)是针对HTML和XML文档的一个API. DOM描绘了一个层次化的节点树.同意开发者加入,移除和改动页面的某一部分.DOM脱胎于微软公司的DHTLM(动态HTML),可是如今它已 ...
- phpmyadmin内存溢出
phpmyadmin Fatal error: Allowed memory size of 134217728 bytes 解决方法: 在报错的页面里,加上这句: ini_set('memory_l ...
- struts2 Eclipse 中集成strust2开发框架实例
下面通过建立一个小的实例具体来说明Eclipse 集成struts2,以下实例采用的为 struts2 版本为 struts2 2.2.3.1 为应用. 1. 下载struts2的开发包 第一步: 在 ...
- python 基础 4.2 高阶函数上
一.高阶函数 把函数当做参数传递的一种函数 1>map()函数 map函数是python内置的一个高阶函数,它接受一个函数f和一个list,并把list元素以此传递给函数f,然后返回一个函数 ...
- python网络爬虫之如何识别验证码
有些网站的登录方式是验证码登录的方式,比如今天我们要测试的网站专利检索及分析. http://www.pss-system.gov.cn/sipopublicsearch/portal/uilogin ...
- jforum二次开发教程
环境准备: 一.Tomcat服务器 首先需要在本地搭建tomcat.tomcat搭建过程本人博客中有,不再重复纪录.因为开始没有搭建成功,浪费了一定时间. 二.Mysql服务器 在 ...