bzoj 1954 & poj 3764 The xor-longest Path dfs+Trie
题目大意
给定一棵n个点的带权树,求树上最长的异或和路径
题解
因为\(xor\)操作满足可结合性,所以有
\(a\text{ }xor\text{ }b\text{ }xor\text{ }b = a\)
那么我们可以计算出每个点到根的xor距离,设为\(dis\)
那么我们知道\(dis_u\text{ }xor\text{ }dis_v\)即\(u,v\)之间的距离的xor值
所以我们把所有的\(dis\)插到01Trie里,再对每个\(dis\)值求最大即可
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline int cat_max(const int &a,const int &b){return a>b ? a:b;}
inline int cat_min(const int &a,const int &b){return a<b ? a:b;}
const int maxn = 100010;
struct Edge{
int to,next,dis;
}G[maxn<<1];
int head[maxn],cnt;
void add(int u,int v,int d){
G[++cnt].to = v;
G[cnt].next = head[u];
head[u] = cnt;
G[cnt].dis = d;
}
inline void insert(int u,int v,int d){
add(u,v,d);add(v,u,d);
}
int dis[maxn];
#define v G[i].to
void dfs(int u,int fa){
for(int i = head[u];i;i=G[i].next){
if(v == fa) continue;
dis[v] = dis[u]^G[i].dis;
dfs(v,u);
}
}
#undef v
int ch[maxn*32][2],nodecnt;
bool ed[maxn*32];
inline void insert(int x){
int nw = 0;
for(int i = 31;i;--i){
int id = (bool)(x & (1 << (i-1)));
if(ch[nw][id] == 0) ch[nw][id] = ++nodecnt;
nw = ch[nw][id];
}ed[nw] = true;
}
inline int query(int x){
int ret = 0,nw = 0;
for(int i=31;i;--i){
int id = (bool)(x & (1 << (i-1)));
if(ch[nw][id^1] != 0){
ret |= (1<<(i-1));
nw = ch[nw][id^1];
}else nw = ch[nw][id];
}return ret;
}
inline void init(){
memset(head,0,sizeof head);
memset(ch,0,sizeof ch);
memset(ed,0,sizeof ed);
memset(dis,0,sizeof dis);
cnt = nodecnt = 0;
}
int main(){
int n;
while(scanf("%d",&n) != EOF){
init();
int u,v,d;
for(int i=1;i<n;++i){
read(u);read(v);read(d);
insert(u,v,d);
}dfs(1,0);
for(int i=1;i<=n;++i) insert(dis[i]);
int ans = 0;
for(int i=1;i<=n;++i){
ans = max(ans,query(dis[i]));
}printf("%d\n",ans);
}
getchar();getchar();
return 0;
}
bzoj 1954 & poj 3764 The xor-longest Path dfs+Trie的更多相关文章
- 【POJ 3764】The Xor-longest Path
题目 给定一个\(n\)个点的带权无根树,求树上异或和最大的一条路径. \(n\le 10^5\) 分析 一个简单的例子 相信大家都做过这题: 给定一个\(n\)个点的带权无根树,有\(m\)个询问, ...
- 【POJ 3764】 The xor-longest path
[题目链接] http://poj.org/problem?id=3764 [算法] 首先,我们用Si表示从节点i到根的路径边权异或和 那么,根据异或的性质,我们知道节点u和节点v路径上的边权异或和就 ...
- poj3764 The XOR Longest Path【dfs】【Trie树】
The xor-longest Path Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10038 Accepted: ...
- 题解 bzoj1954【Pku3764 The xor – longest Path】
做该题之前,至少要先会做这道题. 记 \(d[u]\) 表示 \(1\) 到 \(u\) 简单路径的异或和,该数组可以通过一次遍历求得. \(~\) 考虑 \(u\) 到 \(v\) 简单路径的异或和 ...
- POJ 3764 - The xor-longest Path - [DFS+字典树变形]
题目链接:http://poj.org/problem?id=3764 Time Limit: 2000MS Memory Limit: 65536K Description In an edge-w ...
- poj 3764 The xor-longest Path(字典树)
题目链接:poj 3764 The xor-longest Path 题目大意:给定一棵树,每条边上有一个权值.找出一条路径,使得路径上权值的亦或和最大. 解题思路:dfs一遍,预处理出每一个节点到根 ...
- Solve Longest Path Problem in linear time
We know that the longest path problem for general case belongs to the NP-hard category, so there is ...
- Why longest path problem doesn't have optimal substructure?
We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...
- POJ 3764 DFS+trie树
题意: 给你一棵树,求树中最长的xor路径.(n<=100000) 思路: 首先我们知道 A xor B =(A xor C) xor (B xor C) 我们可以随便选一个点DFS 顺便做出与 ...
随机推荐
- SpringBoot启动流程分析(一):SpringApplication类初始化过程
SpringBoot系列文章简介 SpringBoot源码阅读辅助篇: Spring IoC容器与应用上下文的设计与实现 SpringBoot启动流程源码分析: SpringBoot启动流程分析(一) ...
- Java方法存在于哪一区
Java运行时的数据区包括:(其中前两个是线程共享的) 1.方法区(Method Area)存储已被虚拟机加载的类信息.常量.静态变量.即编译器编译后的代码等数据 2.堆(Heap)存放对象实例,几乎 ...
- js中insertAdjacentHTML的玩法
原型:insertAdajcentHTML(swhere,stext) insertAdjacentHTML方法:在指定的地方插入html标签语句 参数:swhere: 指定插入html标签语句的地方 ...
- vs2013数据库连接对应的dll
mysql for visual studio 1.1.1mysql connector net 6.3.9mysql connector/odbc 5.3
- 开源大数据引擎:Greenplum 数据库架构分析
Greenplum 数据库是最先进的分布式开源数据库技术,主要用来处理大规模的数据分析任务,包括数据仓库.商务智能(OLAP)和数据挖掘等.自2015年10月正式开源以来,受到国内外业内人士的广泛关注 ...
- Windows下Nginx+Web.py+FastCGI服务搭建
在搭建之前,有必要了解下什么是fastcgi,但鉴于我自己也不大了解,这里就不搬门弄斧了,请参考各种百科和官网资料. 1.资源下载 python下载地址:戳这里webpy下载地址:戳这里flup下载地 ...
- python 基础 2.4 while 循环
#/usr/bin/python #coding=utf-8 #@Time :2017/10/18 15:31 #@Auther :liuzhenchuan #@File :while 循环.py 示 ...
- python之Matplotlib 和Numpy
1.matplotlib http://www.cnblogs.com/TensorSense/p/6802280.html https://wenku.baidu.com/view/e1c15c9d ...
- restlet验证
1 restlet有无认证对比 无认证: 客户端发起请求 -----> 服务器路由 -----> 访问服务端资源 有认证: 客户端发起请求 -----> 认证 ----->服务 ...
- Linux RabbitMQ的安装、环境配置、远程访问 , Windows 下安装的RabbitMQ远程访问
Linux RabbitMQ的安装和环境配置 1.安装 RabbitMQ是使用Erlang语言编写的,所以安装RabbitMQ之前,先要安装Erlang环境 #对原来的yum官方源做个备份 1.mv ...