P2764 [网络流24题]最小路径覆盖问题[最大流]
这题有个转化,求最少的链覆盖→即求最少联通块。
设联通块个数$x$个,选的边数$y$,点数$n$个
那么有 $y=n-x$ 即 $x=n-y$
而n是不变的,目标就是在保证每个点入度、出度不大于1的前提下让选的边尽可能地多。
下面网络流建模。
利用二分图匹配建图,左右两点集都包含 n 个点,左点集代表 u 的出度,右点集代表 u 的入度。对于原图中的边 (u,v),从 左边的u点 向 右边的v点 连一条容量为 1 的 边,左点集与超级源点、右点集与超级汇点都分别连一条容量 1 的边,然后从源点做最大流,容量设1保证了我们每个点只流向另外唯一一个点,不会重叠。最大流即为所选边在满足条件下的最多数量。答案就是$n-y$。
spj那个的话就只要找到每一块的起点,也就是入度为0,这个看代码。找到起点就往后查残量为0的边顺着跑到底就行啦。
注意,这个只能是对DAP有效。有环的话就不行了,连通块会多余边会被流过,可以画一下。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A<B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A>B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;char c;while(!isdigit(c=getchar()))if(isalpha(c))return x=(int)c;
while(isdigit(c))x=(x<<)+(x<<)+(c^),c=getchar();return x;
}
const int N=+,M=+,INF=0x3f3f3f3f;
int w[M<<],v[M<<],Next[M<<],Head[N<<],cur[N<<],dis[N<<],tot=,s,t,n,m;
inline void Addedge(int x,int y,int z){
v[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
v[++tot]=x,Next[tot]=Head[y],Head[y]=tot,w[tot]=;
}
#define y v[j]
inline char bfs(){
queue<int> q;q.push(s),memset(dis,,sizeof dis),dis[s]=;
for(register int i=;i<=(n<<)+;++i)cur[i]=Head[i];
while(!q.empty()){
int x=q.front();q.pop();
for(register int j=Head[x];j;j=Next[j])if(w[j]&&!dis[y]){
dis[y]=dis[x]+,q.push(y);
if(y==t)return ;
}
}
return ;
}
int dinic(int x,int flow){
if(!flow||x==t)return flow;
int rest=flow,k;
for(register int j=cur[x];j&&rest;cur[x]=j,j=Next[j])if(w[j]&&dis[y]==dis[x]+){
if(!(k=dinic(y,_min(rest,w[j]))))dis[y]=;
rest-=k,w[j]-=k,w[j^]+=k;
}
return flow-rest;
}
#undef y
int x,y,ans;
inline void print(int x){
printf("%d ",x);
for(register int j=Head[x];j;j=Next[j])if(v[j]<s&&!w[j])print(v[j]-n);
} int main(){//freopen("tmp.in","r",stdin);freopen("tmp.out","w",stdout);
read(n),read(m);s=*n+,t=*n+;
for(register int i=;i<=n;++i)Addedge(s,i,);
for(register int i=n+;i<=n*;++i)Addedge(i,t,);
for(register int i=;i<=m;++i)read(x),read(y),Addedge(x,y+n,);
while(bfs())ans+=dinic(s,INF); ans=n-ans;
for(register int i=n+;i<s;++i){// s <==> n*2+1
int tmp=;
for(register int j=Head[i];j;j=Next[j])if(v[j]<=n&&w[j]){tmp=;break;}
if(!tmp)print(i-n),puts("");
}
printf("%d\n",ans);
return ;
}
P2764 [网络流24题]最小路径覆盖问题[最大流]的更多相关文章
- Cogs 728. [网络流24题] 最小路径覆盖问题
[网络流24题] 最小路径覆盖问题 ★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件 时间限制:1 s 内存限制:128 MB 算法实现题8-3 最小路径覆盖问题(习题8-1 ...
- cogs 728. [网络流24题] 最小路径覆盖问题 匈牙利算法
728. [网络流24题] 最小路径覆盖问题 ★★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件时间限制:1 s 内存限制:128 MB 算法实现题8-3 最 ...
- COGS728. [网络流24题] 最小路径覆盖问题
算法实现题8-3 最小路径覆盖问题(习题8-13) ´问题描述: 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中 ...
- 网络流24题 最小路径覆盖(DCOJ8002)
题目描述 给定有向图 G=(V,E) G = (V, E)G=(V,E).设 P PP 是 G GG 的一个简单路(顶点不相交)的集合.如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P ...
- 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)
http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
- LuoguP2764 最小路径覆盖问题(最大流)
题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...
- Cogs 731. [网络流24题] 最长递增子序列(最大流)
[网络流24题] 最长递增子序列 ★★★☆ 输入文件:alis.in 输出文件:alis.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 给定正整数序列x1,-, xn. ( ...
- 2018.10.14 loj#6003. 「网络流 24 题」魔术球(最大流)
传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1和i2i_2i2,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1),(i2, ...
随机推荐
- jQuery Validate(二)
刚刚试了所谓的新版的用法.千万别问我是多新,因为我也不知道... <!DOCTYPE html> <html> <head> <script src=&quo ...
- JS中的call_user_func封装
PHP常见的call_user_func方法,在JS中有时候会用到,比如你想根据某个动态变量去执行方法. 以前遇到过类似的问题没有解决,现在不太记得具体案例了.今天无意中看到类似文章,学到了.代码如下 ...
- 流式 storm介绍
Storm是什么 如果只用一句话来描述storm的话,可能会是这样:分布式实时计算系统.按照storm作者的说法,storm对于实时计算的意义类似于hadoop对于批处理的意义.我们都知道,根据goo ...
- RRDTool详解(转)
原创作品,允许转载,转载时请务必以超链接形式标明文章原始出处.作者信息和本声明.否则将追究法律责任.http://freeloda.blog.51cto.com/2033581/1307492 大纲 ...
- WCF服务返回XML或JSON格式数据
第一种方式public string GetData( string format) { string res = null; Student stu = new Student { StuID = ...
- c# 备份数据
#region 备份数据文件 /// <summary> /// 备份数据文件 /// </summary> /// <param name="strFileN ...
- Magnetic Fingerprinting Approach to Indoor Localization
Magnetic Fingerprinting Approach to Indoor Localization
- python cookbook第三版学习笔记四:文本以及字符串令牌解析
文本处理: 假设你存在一个目录,下面存在各种形式的文件,有txt,csv等等.如果你只想找到其中一种或多种格式的文件并打开该如何办呢.首先肯定是要找到满足条件的文件,然后进行路径合并在一一打开. pa ...
- indows下PHP通过ffmpeg给上传的视频截图详解
windows下PHP通过ffmpeg给上传的视频截图详解,php_ffmpeg.dll安装下载,找了很久php_ffmpeg.dll的下载地址和应用,发现有用的资源很少,现在问题解决了,贴出来跟大家 ...
- UVA - 11954 Very Simple Calculator 【模拟】
题意 模拟二进制数字的位运算 思路 手写 位运算函数 要注意几个坑点 一元运算符的优先级 大于 二元 一元运算符 运算的时候 要取消前导0 二元运算符 运算的时候 要将两个数字 数位补齐 输出的时候 ...