地址

这题有个转化,求最少的链覆盖→即求最少联通块。

设联通块个数$x$个,选的边数$y$,点数$n$个

那么有 $y=n-x$   即  $x=n-y$

而n是不变的,目标就是在保证每个点入度、出度不大于1的前提下让选的边尽可能地多。

下面网络流建模。

利用二分图匹配建图,左右两点集都包含 n 个点,左点集代表 u 的出度,右点集代表 u 的入度。对于原图中的边 (u,v),从 左边的u点 向 右边的v点 连一条容量为 1 的 边,左点集与超级源点、右点集与超级汇点都分别连一条容量 1 的边,然后从源点做最大流,容量设1保证了我们每个点只流向另外唯一一个点,不会重叠。最大流即为所选边在满足条件下的最多数量。答案就是$n-y$。

spj那个的话就只要找到每一块的起点,也就是入度为0,这个看代码。找到起点就往后查残量为0的边顺着跑到底就行啦。

注意,这个只能是对DAP有效。有环的话就不行了,连通块会多余边会被流过,可以画一下。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A<B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A>B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;char c;while(!isdigit(c=getchar()))if(isalpha(c))return x=(int)c;
while(isdigit(c))x=(x<<)+(x<<)+(c^),c=getchar();return x;
}
const int N=+,M=+,INF=0x3f3f3f3f;
int w[M<<],v[M<<],Next[M<<],Head[N<<],cur[N<<],dis[N<<],tot=,s,t,n,m;
inline void Addedge(int x,int y,int z){
v[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
v[++tot]=x,Next[tot]=Head[y],Head[y]=tot,w[tot]=;
}
#define y v[j]
inline char bfs(){
queue<int> q;q.push(s),memset(dis,,sizeof dis),dis[s]=;
for(register int i=;i<=(n<<)+;++i)cur[i]=Head[i];
while(!q.empty()){
int x=q.front();q.pop();
for(register int j=Head[x];j;j=Next[j])if(w[j]&&!dis[y]){
dis[y]=dis[x]+,q.push(y);
if(y==t)return ;
}
}
return ;
}
int dinic(int x,int flow){
if(!flow||x==t)return flow;
int rest=flow,k;
for(register int j=cur[x];j&&rest;cur[x]=j,j=Next[j])if(w[j]&&dis[y]==dis[x]+){
if(!(k=dinic(y,_min(rest,w[j]))))dis[y]=;
rest-=k,w[j]-=k,w[j^]+=k;
}
return flow-rest;
}
#undef y
int x,y,ans;
inline void print(int x){
printf("%d ",x);
for(register int j=Head[x];j;j=Next[j])if(v[j]<s&&!w[j])print(v[j]-n);
} int main(){//freopen("tmp.in","r",stdin);freopen("tmp.out","w",stdout);
read(n),read(m);s=*n+,t=*n+;
for(register int i=;i<=n;++i)Addedge(s,i,);
for(register int i=n+;i<=n*;++i)Addedge(i,t,);
for(register int i=;i<=m;++i)read(x),read(y),Addedge(x,y+n,);
while(bfs())ans+=dinic(s,INF); ans=n-ans;
for(register int i=n+;i<s;++i){// s <==> n*2+1
int tmp=;
for(register int j=Head[i];j;j=Next[j])if(v[j]<=n&&w[j]){tmp=;break;}
if(!tmp)print(i-n),puts("");
}
printf("%d\n",ans);
return ;
}

P2764 [网络流24题]最小路径覆盖问题[最大流]的更多相关文章

  1. Cogs 728. [网络流24题] 最小路径覆盖问题

    [网络流24题] 最小路径覆盖问题 ★★☆ 输入文件:path3.in 输出文件:path3.out 评测插件 时间限制:1 s 内存限制:128 MB 算法实现题8-3 最小路径覆盖问题(习题8-1 ...

  2. cogs 728. [网络流24题] 最小路径覆盖问题 匈牙利算法

    728. [网络流24题] 最小路径覆盖问题 ★★★☆   输入文件:path3.in   输出文件:path3.out   评测插件时间限制:1 s   内存限制:128 MB 算法实现题8-3 最 ...

  3. COGS728. [网络流24题] 最小路径覆盖问题

    算法实现题8-3 最小路径覆盖问题(习题8-13) ´问题描述: 给定有向图G=(V,E).设P是G的一个简单路(顶点不相交)的集合.如果V中每个顶点恰好在P的一条路上,则称P是G的一个路径覆盖.P中 ...

  4. 网络流24题 最小路径覆盖(DCOJ8002)

    题目描述 给定有向图 G=(V,E) G = (V, E)G=(V,E).设 P PP 是 G GG 的一个简单路(顶点不相交)的集合.如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P ...

  5. 【wikioi】1904 最小路径覆盖问题(最大流+坑人的题+最小路径覆盖)

    http://wikioi.com/problem/1904/ 这题没看数据的话是一个大坑(我已报告官方修复了),答案只要求数量,不用打印路径...orz 最小路径覆盖=n-最大匹配,这个我在说二分图 ...

  6. 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】

    P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...

  7. LuoguP2764 最小路径覆盖问题(最大流)

    题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖.P 中路径可以从V 的任何一个顶点开 ...

  8. Cogs 731. [网络流24题] 最长递增子序列(最大流)

    [网络流24题] 最长递增子序列 ★★★☆ 输入文件:alis.in 输出文件:alis.out 简单对比 时间限制:1 s 内存限制:128 MB «问题描述: 给定正整数序列x1,-, xn. ( ...

  9. 2018.10.14 loj#6003. 「网络流 24 题」魔术球(最大流)

    传送门 网络流好题. 这道题可以动态建图. 不难想到把每个球iii都拆点成i1i_1i1​和i2i_2i2​,每次连边(s,i1),(i2,t)(s,i_1),(i_2,t)(s,i1​),(i2​, ...

随机推荐

  1. LOL英雄联盟代打外挂程序-java实现

    相信非常多程序员都玩游戏,比方LOL :有时候想打人机对战(玩家对战小心别人举报你! ),纯属为了拿经验和金币,而本身不想玩,但假设玩家不操作.那么非常快就会被系统觉得是挂机,从而得不到经验和金币.所 ...

  2. HDFS源码分析之EditLogTailer

    在FSNamesystem中,有这么一个成员变量,定义如下: /** * Used when this NN is in standby state to read from the shared e ...

  3. 通过PHP获取文件创建与修改时间

    1.获取文件创建时间示例: 1 2 $ctime=filectime("chinawinxp.txt"); echo "创建时间:".date("Y- ...

  4. JavaWeb、J2-SE开发框架——Spring

    相关博客:   2.spring官网 1.使用Spring的jdbcTemplate进一步简化JDBC操作

  5. Unable to save settings: Failed to save settings. Please restart PyCharm解决

    将工程的.ideas目录删掉,重启pycharm即可.

  6. linux下proc里关于磁盘性能的参数(转)

    我们在磁盘写操作持续繁忙的服务器上曾经碰到一个特殊的性能问题.每隔 30 秒,服务器就会遇到磁盘写活动高峰,导致请求处理延迟非常大(超过3秒).后来上网查了一下资料,通过调整内核参数,将写活动的高峰分 ...

  7. Oracle -- Create User

    CREATE USER hibernate IDENTIFIED BY "123" DEFAULT TABLESPACE "HIBERNATE" TEMPORA ...

  8. Android 关于软键盘

    一..弹出的时候显示Editext框 添加布局replay_input <?xml version="1.0" encoding="utf-8"?> ...

  9. boost::noncopyable

    /** * boost::noncopyable 实现单例不用麻烦了,直接从这个继承就行了 */ #include <boost/noncopyable.hpp> class myclas ...

  10. 【BZOJ1786】[Ahoi2008]Pair 配对 DP

    [BZOJ1786][Ahoi2008]Pair 配对 Description Input Output Sample Input 5 4 4 2 -1 -1 3 Sample Output 4 题解 ...