网络流 P3358 最长k可重区间集问题
P3358 最长k可重区间集问题
题目描述
对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度。
输入输出格式
输入格式:
的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重迭数。接下来的 n行,每行有 2 个整数,表示开区间的左右端点坐标。
输出格式:
将计算出的最长 k可重区间集的长度输出
输入输出样例
说明
对于100%的数据,1\le n\le 5001≤n≤500,1\le k\le 31≤k≤3
写一下这个题目的思路,这个图很难建。
看了一下题解,觉得很巧妙。
看了这个图就好理解一点了,就是你要把k假定为网络流的最大流量,把每一个区间离散化。
这个看代码更好理解一些,不过可以抽象的讲一下。
就是你把这些区间互不相重叠的划成一条路,假设有5条路,k=2,
那么最多只能从这五条路里面选择两条路,因为如果大于等于2,那么就会出现问题,比如说,第一个区间和第二个区间,
则第二个区间里的每一段,如果不是和第一个区间肯定都是和第一个区间的某一段有交集。
。。。。不好说,还是看代码吧,多搜搜题解,不放弃,最后总会写的。
#include <cstdio>
#include <cstdlib>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#include <map>
#include <cstring>
#include <string>
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int INF = 0x3f3f3f3f;
const int maxn = 1e5;
struct edge
{
int u, v, c, f, cost;
edge(int u, int v, int c, int f, int cost) :u(u), v(v), c(c), f(f), cost(cost) {}
};
vector<edge>e;
vector<int>G[maxn];
int a[maxn];//找增广路每个点的水流量
int p[maxn];//每次找增广路反向记录路径
int d[maxn];//SPFA算法的最短路
int inq[maxn];//SPFA算法是否在队列中
int s, t;
void init(int n)
{
for (int i = ; i <= n; i++)G[i].clear();
e.clear();
}
void add(int u, int v, int c, int cost)
{
e.push_back(edge(u, v, c, , cost));
e.push_back(edge(v, u, , , -cost));
int m = e.size();
G[u].push_back(m - );
G[v].push_back(m - );
}
bool bellman(int s, int t, int& flow, long long & cost)
{
memset(d, 0xef, sizeof(d));
memset(inq, , sizeof(inq));
d[s] = ; inq[s] = ;//源点s的距离设为0,标记入队
p[s] = ; a[s] = INF;//源点流量为INF(和之前的最大流算法是一样的) queue<int>q;//Bellman算法和增广路算法同步进行,沿着最短路拓展增广路,得出的解一定是最小费用最大流
q.push(s);
while (!q.empty())
{
int u = q.front();
q.pop();
inq[u] = ;//入队列标记删除
for (int i = ; i < G[u].size(); i++)
{
edge & now = e[G[u][i]];
int v = now.v;
if (now.c > now.f && d[v] < d[u] + now.cost)
//now.c > now.f表示这条路还未流满(和最大流一样)
//d[v] > d[u] + e.cost Bellman 算法中边的松弛
{
d[v] = d[u] + now.cost;//Bellman 算法边的松弛
p[v] = G[u][i];//反向记录边的编号
a[v] = min(a[u], now.c - now.f);//到达v点的水量取决于边剩余的容量和u点的水量
if (!inq[v]) { q.push(v); inq[v] = ; }//Bellman 算法入队
}
}
}
if (d[t] < )return false;//找不到增广路
flow += a[t];//最大流的值,此函数引用flow这个值,最后可以直接求出flow
cost += (long long)d[t] * (long long)a[t];//距离乘上到达汇点的流量就是费用
for (int u = t; u != s; u = e[p[u]].u)//逆向存边
{
e[p[u]].f += a[t];//正向边加上流量
e[p[u] ^ ].f -= a[t];//反向边减去流量 (和增广路算法一样)
}
return true;
}
int MaxcostMaxflow(int s, int t, long long & cost)
{
cost = ;
int flow = ;
while (bellman(s, t, flow, cost));//由于Bellman函数用的是引用,所以只要一直调用就可以求出flow和cost
return flow;//返回最大流,cost引用可以直接返回最小费用
} struct node
{
int l, r;
}exa[maxn];
bool cmp(node a,node b)
{
return a.l < b.l;
}
int main()
{
int n, m;
cin >> n >> m;
int s1 = ;
s = , t = * n + ;
for(int i=;i<=n;i++)
{
cin >> exa[i].l >> exa[i].r;
if (exa[i].l > exa[i].r) swap(exa[i].l, exa[i].r);
}
sort(exa + , exa + + n, cmp);
add(s, s1, m, );
for(int i=;i<=n;i++)
{
add(s1, + * i - , , );
add( + * i - , + * i,, exa[i].r - exa[i].l);
add( + * i, t, , );
for(int j=;j<i;j++)
{
if (exa[j].r <= exa[i].l) add( + * j, + * i - , , );
}
}
ll cost = ;
int ans = MaxcostMaxflow(s, t, cost);
printf("%lld\n", cost);
return ;
}
网络流 P3358 最长k可重区间集问题的更多相关文章
- (luogu P3358)最长k可重区间集问题 [TPLY]
最长k可重区间集问题 题目链接 https://www.luogu.org/problemnew/show/3358 做法 所有点向下一个点连容量为k费用为0的边 l和r连容量为1费用为区间长度的边 ...
- 洛谷P3358 最长k可重区间集问题(费用流)
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
- 洛谷P3358 最长k可重区间集问题(费用流)
传送门 因为一个zz错误调了一个早上……汇点写错了……spfa也写错了……好吧好像是两个…… 把数轴上的每一个点向它右边的点连一条边,容量为$k$,费用为$0$,然后把每一个区间的左端点向右端点连边, ...
- luogu P3358 最长k可重区间集问题
网络流建图好难,这题居然是网络流(雾,一般分析来说,有限制的情况最大流情况可以拆点通过capacity来限制,比如只使用一次,把一个点拆成入点出点,capacity为1即可,这题是限制最大k重复,可以 ...
- P3358 最长k可重区间集问题
题目链接 \(Click\) \(Here\) 这题的写法非常巧妙. 每个位置的点向它的下一个位置连一个容量为\(INF\)的边,从区间的左端点往右端点拉一条容量为\(1\),费用为区间长度的边,从起 ...
- 【Luogu】P3358最长k可重区间集问题(费用流)
题目链接 这题费用瘤,数据貌似还是错的. 把线段抽象抽象拆成两个点,入点表示左端,出点表示右端,连上容量为1费用-长度的边. 不相交线段随便连下,源点向拆出的原点S'连费用为0容量k,然后跑费用流. ...
- 洛谷 P3358 最长k可重区间集问题 【最大费用最大流】
同 poj 3680 https:www.cnblogs.com/lokiii/p/8413139.html #include<iostream> #include<cstdio&g ...
- 「网络流24题」「LuoguP3358」 最长k可重区间集问题(费用流
题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k,分别表示开区间的个数和开区间的可重 ...
- 最长k可重区间集
P3358 最长k可重区间集问题 P3357 最长k可重线段集问题 P3356 火星探险问题 P4012 深海机器人问题 P3355 骑士共存问题 P2754 [CTSC1999]家园 题目描述 ...
随机推荐
- UIAlertControl的使用对比与UIAlertView和UIActionSheet
1.UIAlertVIew以-(void)show的方法显示: - (void)viewDidLoad { [super viewDidLoad]; //UIAlertView的使用 [self sh ...
- SSL WSS HTTPS
SSLSSL(Secure Socket Layer,安全套接层) 简单来说是一种加密技术, 通过它, 我们可以在通信的双方上建立一个安全的通信链路, 因此数据交互的双方可以安全地通信, 而不需要担心 ...
- CSS3 :nth-child() 选择器---挖坑
E:nth-child(n) 语法: E:nth-child(n) { sRules } 说明: 匹配父元素的第n个子元素E,假设该子元素不是E,则选择符无效.(也就是说,会检查从body开始的每个元 ...
- node.js面向对象实现(二)继承
http://blog.sina.com.cn/s/blog_b5a53f2e0101nrdi.html 继承是面向对象中非常重要的一个概念,那么在Node.js中如何实现继承呢? node.js在u ...
- JAVA中Integer.valueOf, parsetInt() String.valueOf的区别和结果
先来看段代码 public class IntegerDemo { public static void main(String[] args) { String num = null; System ...
- Java中存取权限和修饰符public、private、protected和default的区别和联系
java中有4种存取权限和对应的修饰符(从限制最少的开始列出),主要作用如下: 1.public权限最大,代表任何程序代码都可以存取的公开事物(类.变量.方法.构造函数等).它往往用于对外的情况,也就 ...
- util.go
packagesego import( "bytes" "fmt" ) //输出分词结果为字符串 // //有两种输出模式,以"中华人 ...
- 从一个例子了解window.onload、$(function(){})、$(window).load(function(){})的加载顺序
最近遇到一个轮播需求: 1. ajax请求服务器,返回json,判断json数据里每一项中isFix属性是0还是1,0表示不轮播,1表示需要轮播. 2. 当isFix属性为0的时候,表示该图片不轮播, ...
- bzoj 4501 旅行
01分数规划+最大权闭合子图 倒拓扑序处理每个节点 $$f[x]=\frac{\sum{f[v]}}{n}+1$$ 二分答案$val$ 只需要判断是否存在$\sum{f[v]}+1-val>0$ ...
- 【Unity游戏开发】AssetBundle杂记--AssetBundle的二三事
一.简介 马三在公司大部分时间做的都是游戏业务逻辑和编辑器工具等相关工作,因此对Unity AssetBundle这块的知识点并不是很熟悉,自己也是有打算想了解并熟悉一下AssetBundle,掌握一 ...