bzoj3534 [Sdoi2014]重建
变形的$Martix-Tree$定理
发现我们要求的是$\prod_{i \in E}{p_{i}} * \prod_{i \notin E}{(1-p_{i})}$
然后呢? 矩阵树对重边也有效对吧。考虑带权图,发现建出来的矩阵的任何一个$n-1$阶主子式的行列式的值都是其所有生成树的边权之积的和
那么就可以搞了,考虑每一条边权为$\frac{p_{i}}{(1-p_{i})}$,最后再乘一个$\prod{(1-p_{i})}$即可
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#define eps 1e-10
#define N 55
using namespace std;
int n;
double g[N][N],a[N][N],ans=,tmp=;
void gauss(){
n--;
for(int k=;k<=n;k++){
int bst=k;
for(int i=k+;i<=n;i++)
if(fabs(a[i][k])>fabs(a[bst][k]))bst=i;
if(bst!=k){
for(int i=k;i<=n;i++)
swap(a[k][i],a[bst][i]);
ans*=-;
}
for(int i=k+;i<=n;i++){
double t=a[i][k]/a[k][k];
for(int j=k;j<=n;j++)
a[i][j]-=t*a[k][j];
}
ans*=a[k][k];
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%lf",&g[i][j]);
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(g[i][j]==)g[i][j]-=eps;
tmp*=(-g[i][j]);
g[i][j]=g[i][j]/(-g[i][j]);
a[i][i]+=g[i][j];a[j][j]+=g[i][j];
a[i][j]=-g[i][j];a[j][i]=-g[i][j];
}
}
gauss();
printf("%0.10lf\n",ans*tmp);
return ;
}
bzoj3534 [Sdoi2014]重建的更多相关文章
- BZOJ3534:[SDOI2014]重建(矩阵树定理)
Description T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 幸运 ...
- BZOJ3534 [Sdoi2014]重建 【矩阵树定理】
题目 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国政府 ...
- P3317 [SDOI2014]重建(Matrix-tree+期望)
P3317 [SDOI2014]重建 详情看这位神犇的blog 剩下的注释在code里吧....... #include<iostream> #include<cstdio> ...
- 【BZOJ3534】重建(矩阵树定理)
[BZOJ3534]重建(矩阵树定理) 题面 BZOJ 洛谷 题解 这.... 矩阵树定理神仙用法???? #include<iostream> #include<cmath> ...
- 【BZOJ 3534】 3534: [Sdoi2014]重建 (Matrix-Tree Theorem)
3534: [Sdoi2014]重建 Time Limit: 10 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 709 Solved: 32 ...
- BZOJ3534:[SDOI2014]重建——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3534 https://www.luogu.org/problemnew/show/P3317 T国 ...
- 【BZOJ3534】[SDOI2014] 重建(矩阵树定理)
点此看题面 大致题意: 给你一张图,每条边有一定存在概率.求存在的图刚好为一棵树的概率. 矩阵树定理是什么 如果您不会矩阵树定理,可以看看蒟蒻的这篇博客:初学矩阵树定理. 矩阵树定理的应用 此题中,直 ...
- 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元
题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...
- [SDOI2014]重建
题目描述 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国 ...
随机推荐
- 在java中读取配置文件信息
public class PropertyUtil { public static final Properties PROP = new Properties(); /** * 读取配置文件的内容( ...
- javascript学习(三)——常用方法(2)
一.兼容性较高的浏览器页面关闭 //关闭网页,不支持火狐(火狐返回上次浏览页面) //FireFox非window.open()等弹出页面,需要在地址栏中输入about:config, 然后将do ...
- java并发包分析之———Atomic类型
一.何谓Atomic? Atomic一词跟原子有点关系,后者曾被人认为是最小物质的单位.计算机中的Atomic是指不能分割成若干部分的意思.如果一段代码被认为是Atomic,则表示这段代码在执行过 ...
- sqlServer遇到的问题
重置自增列:dbcc checkident(表名,reseed,数字(初始值))
- SQL SERVER 锁资源问题
1204: cannot obtain a LOCK resource 在sql server 锁资源的限制基本是自动优化调整.如果调整过参数,可能在系统大批量查询的时候出现以上错误,或者是 alwa ...
- Day7 类的继承和继承实现的原理
继承可以分为但继承,多继承. 继承的基本形式 class ParentClass1(object): #定义父类 pass class ParentClass2: #定义父类 pass class S ...
- Amazing iOS Tips
先开个题,慢慢加内容: 准备参考的资料 https://github.com/Aufree/trip-to-iOS https://github.com/vsouza/awesome-io ...
- spirng底层实现原理
什么是框架?框架解决的是什么问题? 编程有一个准则,Don't Repeat Yourself(不要重复你的代码),所以我们会将重复的代码抽取出来,封装到方法中:如果封装的方法过多,将将这些方法封装成 ...
- JS实现数组去重的6种方法总结
方法一: 双层循环,外层循环元素,内层循环时比较值,如果有相同的值则跳过,不相同则push进数组. Array.prototype.distinct = function(){ var arr = t ...
- Java Spring Boot 上传文件和预览文件地址解析
@RequestMapping(value ="/upload",method = RequestMethod.POST) @Permission(isAjax=false) pu ...