题面戳这

类似算法总结

1、静态整体Kth

滑稽吧...sort一遍就好了。

时间复杂度\(O(nlogn)\) 空间复杂度\(O(n)\)

2、动态整体Kth

离散化后开一棵权值线段树,每个位置的值表示这个位置对应的那个数(离散化后的)有多少个,向上维护和;

查询时先查询左子树和sum,比较k和sum的大小:若k<=sum则说明第k小数在左子树中,递归查询左子树;

否则,这个数对应的就是右子树中第k-sum小的数,k-=sum,递归查询右子树。

时间复杂度\(O(nlogn)\) 空间复杂度\(O(n)\)

3、静态区间Kth

对每个点以其前缀开一棵权值线段树,那么任意一段区间均可以表示成为两棵权值线段树作差,即R位置的线段树减去L-1位置上的线段树

每个点开一棵线段树空间复杂度\(O(n^2)\),MLE,考虑到后一个位置相比于前一个位置的更改只有\(logn\)个节点,所以使用主席树

时间复杂度\(O(nlogn)\) 空间复杂度\(O(nlogn)\)

4、动态区间Kth(就是本题辣)

还是要想办法维护前缀和。如果只是同3、的前缀和的话,就要对前缀和进行\(O(nlogn)\)的单次修改,显然TLE。

这里考虑用树状数组维护前缀和。修改时,可以只修改\(logn\)个位置,复杂度\(O(log^2n)\);

查询时,依旧是R位置减去L-1位置,这时候不再是两棵线段树作差,而是log棵线段树与log棵线段树作差;跳的时候,log个节点一起跳到左子树/右子树

时间复杂度\(O(nlog^2n)\) 空间复杂度\(O(nlog^2n)\)

#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAX=10005;
struct segment_tree{int v;int ls,rs;}t[MAX*400];//线段树开nlog^2大小
struct operation{bool b;int l,r,k;int pos,t;}q[MAX];//因为要离散化所以要把所有数据输进来离线搞
int n,m,a[MAX],o[MAX<<1],rt[MAX],len,tot,temp[2][20],cnt[2];
char opt;
void Modify(int &now,int l,int r,int pos,int val)
{
if (!now) now=++tot;
t[now].v+=val;
if (l==r) return;
int mid=l+r>>1;
if (pos<=mid) Modify(t[now].ls,l,mid,pos,val);
else Modify(t[now].rs,mid+1,r,pos,val);
}
void prepare_Modify(int x,int val)
{
int k=lower_bound(o+1,o+len+1,a[x])-o;
for (int i=x;i<=n;i+=i&-i) Modify(rt[i],1,len,k,val);//处理出需要修改哪log棵主席树
}
int Query(int l,int r,int k)
{
if (l==r) return l;
int mid=l+r>>1,sum=0;
for (int i=1;i<=cnt[1];i++) sum+=t[t[temp[1][i]].ls].v;
for (int i=1;i<=cnt[0];i++) sum-=t[t[temp[0][i]].ls].v;
if (k<=sum)
{
for (int i=1;i<=cnt[1];i++) temp[1][i]=t[temp[1][i]].ls;
for (int i=1;i<=cnt[0];i++) temp[0][i]=t[temp[0][i]].ls;
return Query(l,mid,k);
}
else
{
for (int i=1;i<=cnt[1];i++) temp[1][i]=t[temp[1][i]].rs;
for (int i=1;i<=cnt[0];i++) temp[0][i]=t[temp[0][i]].rs;
return Query(mid+1,r,k-sum);
}
}
int prepare_Query(int l,int r,int k)
{
memset(temp,0,sizeof(temp));//同修改,处理出需要进行相减操作的是哪log棵主席树
cnt[0]=cnt[1]=0;
for (int i=r;i;i-=i&-i) temp[1][++cnt[1]]=rt[i];
for (int i=l-1;i;i-=i&-i) temp[0][++cnt[0]]=rt[i];
return Query(1,len,k);
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for (int i=1;i<=n;i++) cin>>a[i],o[++len]=a[i];
for (int i=1;i<=m;i++)
{
cin>>opt;
q[i].b=(opt=='Q');
if (q[i].b) cin>>q[i].l>>q[i].r>>q[i].k;
else cin>>q[i].pos>>q[i].t,o[++len]=q[i].t;
}
sort(o+1,o+len+1);
len=unique(o+1,o+len+1)-o-1;//离散 —— 排序 + 去重
for (int i=1;i<=n;i++) prepare_Modify(i,1);
for (int i=1;i<=m;i++)
{
if (q[i].b) printf("%d\n",o[prepare_Query(q[i].l,q[i].r,q[i].k)]);
else
{
prepare_Modify(q[i].pos,-1);
a[q[i].pos]=q[i].t;
prepare_Modify(q[i].pos,1);
}
}
return 0;
}

[Luogu2617]Dynamic Ranking的更多相关文章

  1. 【BZOJ1901】【Luogu2617】Dynamic Ranking(主席树,树状数组)

    [BZOJ1901][Luogu2617]Dynamic Ranking(主席树,树状数组) 题面 神TM BZOJ权限题 Luogu真良心 题解 如果不考虑修改 很容易的主席树区间第K大 考虑修改 ...

  2. AC日记——Dynamic Ranking 洛谷 P2617

    Dynamic Ranking 思路: 可持久化树状数组: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 1 ...

  3. 洛谷P2617 Dynamic Ranking(主席树,树套树,树状数组)

    洛谷题目传送门 YCB巨佬对此题有详细的讲解.%YCB%请点这里 思路分析 不能套用静态主席树的方法了.因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍...... 话说我真 ...

  4. Luogu Dynamic Ranking (带修改的主席树)

    题目大意: 网址:https://www.luogu.org/problemnew/show/2617 给定一个序列a[1].a[2].....a[N],完成M个操作,操作有两种: [1]Q i j ...

  5. [Luogu2617]Dynamic Rankings(整体二分)

    Luogu 动态区间第K大的整体二分解法 之前学主席树的时候就做了这道题(明明是树套树不是主席树啊),码量挺大而且调了我一个晚上.换成整体二分我半个小时就写完了而且一A. 写起来就是爽. 其实原理很简 ...

  6. Bzoj1901 Dynamic Ranking

    动态区间第k小 离散化后 那么每个点开一棵线段树(主席树)再套一个树状数组在外面 每次询问区间内的树的个数时 相当于进行了一次树状数组求区间和的操作,只是是把树状数组那个点看做主席树,对log棵主席树 ...

  7. 【bzoj1901】dynamic ranking(带修改主席树/树套树)

    题面地址(权限题) 不用权限题的地址 首先说说怎么搞带修改主席树? 回忆一般的kth问题,我们的主席树求的是前缀和,这样我们在目标区间的左右端点的主席树差分下就能求出kth. 那么我们如何支持修改操作 ...

  8. 【bzoj1901】dynamic ranking(带修改主席树)

    传送门(权限) 传送门(非权限) 花了一晚上总算把代码调好了……才知道待修改主席树怎么操作…… 然而还是一知半解orz…… 先说说我的理解吧 我们一般建主席树的时候都是直接在序列上建的 但是如果有修改 ...

  9. [luogu2617]Dynamic Rankings

    题面在这里 description 动态区间第\(k\)大 data range \[n,m\le 10000,a_i,t\le 1e^9\] solution 前置技能:主席树,静态区间第\(k\) ...

随机推荐

  1. [Python Study Notes]CS架构远程访问获取信息--Client端v2.0

    更新内容: 1.增加内存信息获取 2.增加电池信息获取 3.增加磁盘信息获取 4.重新布局窗体 5.增加窗体名称 6.增加连接成功之前,不可按压 效果图: '''''''''''''''''''''' ...

  2. Openwrt上使用dnsmasq和ipset实现域名分流

    目标 部署一台自动代理路由器,实现根据域名来自动设定直连或者代理,而我要做的只是设置PC的默认网关为主路由器(192.168.0.1)还是自动代理路由器(192.168.0.254). 创建Openw ...

  3. Redis 实践2-数据结构

    alias redis-cli='/usr/local/redis/bin/redis-cli'   vi .bashrc 编辑加入  alias redis-cli='/usr/local/redi ...

  4. Java经典编程题50道之二十四

    有5个人坐在一起,问第5个人多少岁,他说比第4个人大2岁.问第4个人岁数,他说比第3个人大2岁. 问第三个人,他说比第2人大两岁.问第2个人, 说比第一个人大两岁.最后问第一个人,他说是10岁. 请问 ...

  5. Vscode 插件

    HTML Snippets Markdown All in One Markdown PDF Markdown Priview Enhanced Markdown TOC Open HTML in D ...

  6. Python接口自动化测试 HTTP协议

    一.HTTP协议简述 二.URL 三.请求 四.响应 五.消息报头 六.常见问题

  7. JDBC底层原理

    Class.forName(“com.mysql.jdbc.Driver”)是 强制JVM将com.mysql.jdbc.Driver这个类加载入内存,并将其注册到DriverManager类,然后根 ...

  8. Object方法

    1. getClass() 返回此 Object 的运行时类. 2. hashCode() 返回该对象的哈希码值. 3. equals() 指示其他某个对象是否与此对象“相等”. 4. toStrin ...

  9. openstack-ocata-计算服务4

    一. 计算服务概览 使用OpenStack计算服务来托管和管理云计算系统.OpenStack计算服务是基础设施即服务(IaaS)系统的主要部分,模块主要由Python实现. OpenStack计算组件 ...

  10. Python基础学习参考(四):条件与循环

    在实际的开发中,想要实现某些功能或者需求,里面必然涉及到一些逻辑,复杂的也好简单也好,那么,通过python语法如何实现呢?这就涉及到了条件与循环.很显然绝大多数的语言都有条件和循环的语法,pytho ...