在程序的运行过程中,我们经常会碰到一些耗时耗资源的操作,为了避免它们阻塞主程序的运行,我们经常会采用多线程或异步任务。比如,在 Web 开发中,对新用户的注册,我们通常会给他发一封激活邮件,而发邮件是个 IO 阻塞式任务,如果直接把它放到应用当中,就需要等邮件发出去之后才能进行下一步操作,此时用户只能等待再等待。更好的方式是在业务逻辑中触发一个发邮件的异步任务,而主程序可以继续往下运行。

Celery 是一个强大的分布式任务队列,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。它的架构组成如下图:

可以看到,Celery 主要包含以下几个模块:

  • 任务模块

    包含异步任务和定时任务。其中,异步任务通常在业务逻辑中被触发并发往任务队列,而定时任务由 Celery Beat 进程周期性地将任务发往任务队列。

  • 消息中间件 Broker

    Broker,即为任务调度队列,接收任务生产者发来的消息(即任务),将任务存入队列。Celery 本身不提供队列服务,官方推荐使用 RabbitMQ 和 Redis 等。

  • 任务执行单元 Worker

    Worker 是执行任务的处理单元,它实时监控消息队列,获取队列中调度的任务,并执行它。

  • 任务结果存储 Backend

    Backend 用于存储任务的执行结果,以供查询。同消息中间件一样,存储也可使用 RabbitMQ, Redis 和 MongoDB 等。

异步任务

使用 Celery 实现异步任务主要包含三个步骤:

  1. 创建一个 Celery 实例
  2. 启动 Celery Worker
  3. 应用程序调用异步任务
$ pip install celery
# 安装好redis

创建tasks.py

import time
from celery import Celery broker = 'redis://127.0.0.1:6379'
backend = 'redis://127.0.0.1:6379/0'
# 密码 redis://:password@127.0.0.1:6379 app = Celery('my_task', broker=broker, backend=backend) @app.task
def add(x, y):
time.sleep(5) # 模拟耗时操作
return x + y

启动celery worker

在当前路径下执行

$ celery worker -A tasks --loglevel=info

调用任务

在当前目录下打开控制台

>>> from tasks import add

>>> add.delay(2,3)

在上面,我们从 tasks.py 文件中导入了 add 任务对象,然后使用 delay() 方法将任务发送到消息中间件(Broker),Celery Worker 进程监控到该任务后,就会进行执行。

另外,我们如果想获取执行后的结果,可以这样做:

>>> result = add.delay(2,5)
>>> result.ready()
>>> False
>>> result.ready()
>>> True
>>> result.get()
>>> 7

使用配置

在上面的例子中,我们直接把 Broker 和 Backend 的配置写在了程序当中,更好的做法是将配置项统一写入到一个配置文件中,通常我们将该文件命名为 celeryconfig.py。Celery 的配置比较多,可以在官方文档查询每个配置项的含义。

celery_demo                    # 项目根目录
├── celery_app # 存放 celery 相关文件
│ ├── __init__.py
│ ├── celeryconfig.py # 配置文件
│ ├── task1.py # 任务文件 1
│ └── task2.py # 任务文件 2
└── client.py # 应用程序

__init__.py 代码如下:

from celery import Celery

app = Celery('demo')                                # 创建 Celery 实例
app.config_from_object('celery_app.celeryconfig') # 通过 Celery 实例加载配置模块

celeryconfig.py 代码如下:

BROKER_URL = 'redis://127.0.0.1:6379'               # 指定 Broker
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # 指定 Backend CELERY_TIMEZONE='Asia/Shanghai' # 指定时区,默认是 UTC
# CELERY_TIMEZONE='UTC' CELERY_IMPORTS = ( # 指定导入的任务模块
'celery_app.task1',
'celery_app.task2'
)

task1.py 代码如下:

import time
from celery_app import app @app.task
def add(x, y):
time.sleep(2)
return x + y

task2.py 代码如下:

import time
from celery_app import app @app.task
def multiply(x, y):
time.sleep(2)
return x * y

client.py 代码如下

from celery_app import task1
from celery_app import task2 task1.add.apply_async(args=[2, 8]) # 也可用 task1.add.delay(2, 8)
task2.multiply.apply_async(args=[3, 7]) # 也可用 task2.multiply.delay(3, 7) print('hello world')

现在,让我们启动 Celery Worker 进程,在项目的根目录下执行下面命令

$ celery -A celery_app worker --loglevel=info

接着,运行 $ python client.py

定时任务

Celery 除了可以执行异步任务,也支持执行周期性任务(Periodic Tasks),或者说定时任务。Celery Beat 进程通过读取配置文件的内容,周期性地将定时任务发往任务队列。

让我们看看例子,项目结构如下:

celery_demo                    # 项目根目录
├── celery_app # 存放 celery 相关文件
├── __init__.py
├── celeryconfig.py # 配置文件
├── task1.py # 任务文件
└── task2.py # 任务文件

__init__.py 代码如下:

from celery import Celery

app = Celery('demo')
app.config_from_object('celery_app.celeryconfig')

celeryconfig.py 代码如下:

from datetime import timedelta
from celery.schedules import crontab # Broker and Backend
BROKER_URL = 'redis://127.0.0.1:6379'
CELERY_RESULT_BACKEND = 'redis://127.0.0.1:6379/0' # Timezone
CELERY_TIMEZONE='Asia/Shanghai' # 指定时区,不指定默认为 'UTC'
# CELERY_TIMEZONE='UTC' # import
CELERY_IMPORTS = (
'celery_app.task1',
'celery_app.task2'
) # schedules
CELERYBEAT_SCHEDULE = {
'add-every-30-seconds': {
'task': 'celery_app.task1.add',
'schedule': timedelta(seconds=30), # 每 30 秒执行一次
'args': (5, 8) # 任务函数参数
},
'multiply-at-some-time': {
'task': 'celery_app.task2.multiply',
'schedule': crontab(hour=9, minute=50), # 每天早上 9 点 50 分执行一次
'args': (3, 7) # 任务函数参数
}
}

task1.py 代码如下:

import time
from celery_app import app @app.task
def add(x, y):
time.sleep(2)
return x + y

task2.py 代码如下:

import time
from celery_app import app @app.task
def multiply(x, y):
time.sleep(2)
return x * y

启动 Celery Worker 进程,在项目的根目录下执行下面命令:

$ celery -A celery_app worker --loglevel=info

接着,启动 Celery Beat 进程,定时将任务发送到 Broker,在项目根目录下执行下面命令:

$ celery beat -A celery_app

在 Worker 窗口我们可以看到,任务 task1 每 30 秒执行一次,而 task2 每天早上 9 点 50 分执行一次。

我们用两个命令启动了 Worker 进程和 Beat 进程,我们也可以将它们放在一个命令中:

$ celery -B -A celery_app worker --loglevel=info

  

Celery的更多相关文章

  1. 异步任务队列Celery在Django中的使用

    前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务.在同事的指引下接触了Celery这个异步任务队 ...

  2. celery使用的一些小坑和技巧(非从无到有的过程)

    纯粹是记录一下自己在刚开始使用的时候遇到的一些坑,以及自己是怎样通过配合redis来解决问题的.文章分为三个部分,一是怎样跑起来,并且怎样监控相关的队列和任务:二是遇到的几个坑:三是给一些自己配合re ...

  3. tornado+sqlalchemy+celery,数据库连接消耗在哪里

    随着公司业务的发展,网站的日活数也逐渐增多,以前只需要考虑将所需要的功能实现就行了,当日活越来越大的时候,就需要考虑对服务器的资源使用消耗情况有一个清楚的认知.     最近老是发现数据库的连接数如果 ...

  4. celery 框架

    转自:http://www.cnblogs.com/forward-wang/p/5970806.html 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据 ...

  5. celery使用方法

    1.celery4.0以上不支持windows,用pip安装celery 2.启动redis-server.exe服务 3.编辑运行celery_blog2.py !/usr/bin/python c ...

  6. Celery的实践指南

    http://www.cnblogs.com/ToDoToTry/p/5453149.html Celery的实践指南   Celery的实践指南 celery原理: celery实际上是实现了一个典 ...

  7. Using Celery with Djang

    This document describes the current stable version of Celery (4.0). For development docs, go here. F ...

  8. centos6u3 安装 celery 总结

    耗时大概6小时. 执行 pip install celery 之后, 在 mac 上 celery 可以正常运行, 在 centos 6u3 上报错如下: Traceback (most recent ...

  9. celery 异步任务小记

    这里有一篇写的不错的:http://www.jianshu.com/p/1840035cb510 自己的"格式化"后的内容备忘下: 我们总在说c10k的问题, 也做了不少优化, 然 ...

  10. Celery 框架学习笔记

    在学习Celery之前,我先简单的去了解了一下什么是生产者消费者模式. 生产者消费者模式 在实际的软件开发过程中,经常会碰到如下场景:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是 ...

随机推荐

  1. nginx系列7:处理HTTP请求的11个阶段

    处理HTTP请求的11个阶段 如下图: 序号 阶段 指令 备注 1 POST_READ realip 获取客户端真实IP 2 SERVER_REWRITE rewrite 3 FIND_CONFIG ...

  2. 代理模式 PROXY Surrogate 结构型 设计模式(十四)

    代理模式 PROXY 别名Surrogate 意图 为其他的对象提供一种代理以控制对这个对象的访问. 代理模式含义比较清晰,就是中间人,中介公司,经纪人... 在计算机程序中,代理就表示一个客户端不想 ...

  3. Jetty 开发指南:嵌入式开发示例

    Jetty具有嵌入各种应用程序的丰富历史. 在本节中,我们将向您介绍我们的git存储库中的embedded-jetty-examples项目下的一些简单示例. 重要:生成此文档时,将直接从我们的git ...

  4. 利用AccessibilityService自动获取微信号(Android)

    前言: 最近遇到一个需求,要求写一个小插件,能够自动在微信的页面弹出一个窗口,展示用户的相关信息(与我们公司有关的信息,方便运营快速了解用户信息). 当时我第一反应是不可能,如果能够在别的app中获取 ...

  5. Android View的重绘过程之WindowManager的addView方法

    博客首页:http://www.cnblogs.com/kezhuang/p/ 关于Activity的contentView的构建过程,我在我的博客中已经分析过了,不了解的可以去看一下 <[An ...

  6. SSM框架多数据源和AOP事务管理之间

  7. 自托管websocket和webapi部署云服务器域名及远程访问

    当写完websocket和webapi服务端时,在本地测试时是没有问题的,因为是通过本地IP及端口号访问(例:127.0.0.1:8080\api\test),也就没有防火墙等安全限制,但当部署到云服 ...

  8. 从0开始的Python学习017Python标准库

    简介 Python标准库使随着Python附带安装的,它包含很多有用的模块.所以对一个Python开发者来说,熟悉Python标准库是十分重要的.通过这些库中的模块,可以解决你的大部分问题. sys模 ...

  9. Hybrid App—Hybrid App开发模式介绍和各种开发模式对比

    什么是Hybrid App 最开的App开发只有原生开发这个概念,但自从H5广泛流行后,一种效率更高的开发模式Hybrid应运而生,它就是"Hybrid模式".Hybrid APP ...

  10. tps 和 qps的区别

    QPS:Queries Per Second意思是“每秒查询率”,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准. TPS:是Transactions ...