http://blog.csdn.net/pipisorry/article/details/52250983

选择合适的estimator

通常机器学习最难的一部分是选择合适的estimator,不同的estimator适用于不同的数据集和问题。

sklearn官方文档提供了一个图[flowchart],可以快速地根据你的数据和问题选择合适的estimator,单击相应的区域还可以获得更具体的内容。

代码中我一般这么写

def gen_estimators():
    '''
    List of the different estimators.
    '''
    estimators = [
        # ('Lasso regression', linear_model.Lasso(alpha=0.1), True),
        ('Ridge regression', linear_model.Ridge(alpha=0.1), True),
        # ('Hinge regression', linear_model.Hinge(), True),
        # ('LassoLars regression', linear_model.LassoLars(alpha=0.1), True),
        ('OrthogonalMatchingPursuitCV regression', linear_model.OrthogonalMatchingPursuitCV(), True),
        ('BayesianRidge regression', linear_model.BayesianRidge(), True),
        ('PassiveAggressiveRegressor regression', linear_model.PassiveAggressiveRegressor(), True),
        ('HuberRegressor regression', linear_model.HuberRegressor(), True),
        # ('LogisticRegression regression', linear_model.LogisticRegression(), True),
    ]
    return estimators

然后如下遍历算法

def cross_validate():
    for name, clf, flag in gen_estimators():
)
        clf.fit(x_train, y_train)
        print(name, '\n', clf.coef_)
        # scores = cross_val_score(clf, x, y, cv=5, scoring='roc_auc')
        y_score = clf.predict(x_test)
        y_score = np.select([y_score < 0.0, y_score > 1.0, True], [0.0, 1.0, y_score])
        scores = metrics.roc_auc_score(y_true=[1.0 if _ > 0.0 else 0.0 for _ in y_test], y_score=y_score)
        )
X_train.shape, y_train.shape
((90, 4), (90,))
X_test.shape, y_test.shape
((60, 4), (60,))

clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train)
clf.score(X_test, y_test)
0.96...

sklearn交叉验证

scores , scoring=rocAucScorer)

自定义CV策略

(cv是整数的话默认使用KFold):

>>> n_samples = iris.data.shape[0]
>>> cv = cross_validation.ShuffleSplit(n_samples, n_iter=3, test_size=0.3, random_state=0)
>>> cross_validation.cross_val_score(clf, iris.data, iris.target, cv=cv)
array([ 0.97...,  0.97...,  1.        ])

另一个接口cross_val_predict ,可以返回每个元素作为test set时的确切预测值(只有在CV的条件下数据集中每个元素都有唯一预测值时才不会出现异常),进而评估estimator:
>>> predicted = cross_validation.cross_val_predict(clf, iris.data, iris.target, cv=10)
>>> metrics.accuracy_score(iris.target, predicted)
0.966...

[scikit-klean交叉验证]

皮皮blog

Scikit-learn:并行调参Grid Search

Grid Search: Searching for estimator parameters

scikit-learn中提供了pipeline(for estimator connection) & grid_search(searching best parameters)进行并行调参

如使用scikit-learn做文本分类时:vectorizer取多少个word呢?预处理时候要过滤掉tf>max_df的words,max_df设多少呢?tfidftransformer只用tf还是加idf呢?classifier分类时迭代几次?学习率怎么设?……
“循环一个个试”,这就是grid search要做的基本东西。

皮皮blog

from: http://blog.csdn.net/pipisorry/article/details/52250983

ref: [scikit-learn User Guide]

[Model selection and evaluation]

[3.1. Cross-validation: evaluating estimator performance]*

[3.2. Grid Search: Searching for estimator parameters]*

[3.4. Model persistence]

[Parameter estimation using grid search with cross-validation*]

[Sample pipeline for text feature extraction and evaluation*]

[python并行调参——scikit-learn grid_search]*

Scikit-learn:模型选择Model selection的更多相关文章

  1. ISLR系列:(4.1)模型选择 Subset Selection

    Linear Model Selection and Regularization 此博文是 An Introduction to Statistical Learning with Applicat ...

  2. 学习笔记之Model selection and evaluation

    学习笔记之scikit-learn - 浩然119 - 博客园 https://www.cnblogs.com/pegasus923/p/9997485.html 3. Model selection ...

  3. Spark2 Model selection and tuning 模型选择与调优

    Model selection模型选择 ML中的一个重要任务是模型选择,或使用数据为给定任务找到最佳的模型或参数. 这也称为调优. 可以对诸如Logistic回归的单独Estimators进行调整,或 ...

  4. 转:机器学习 规则化和模型选择(Regularization and model selection)

    规则化和模型选择(Regularization and model selection) 转:http://www.cnblogs.com/jerrylead/archive/2011/03/27/1 ...

  5. 斯坦福大学公开课机器学习:advice for applying machine learning | model selection and training/validation/test sets(模型选择以及训练集、交叉验证集和测试集的概念)

    怎样选用正确的特征构造学习算法或者如何选择学习算法中的正则化参数lambda?这些问题我们称之为模型选择问题. 在对于这一问题的讨论中,我们不仅将数据分为:训练集和测试集,而是将数据分为三个数据组:也 ...

  6. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  7. 评估预测函数(3)---Model selection(选择多项式的次数) and Train/validation/test sets

    假设我们现在想要知道what degree of polynomial to fit to a data set 或者 应该选择什么features 或者 如何选择regularization par ...

  8. Bias vs. Variance(2)--regularization and bias/variance,如何选择合适的regularization parameter λ(model selection)

    Linear regression with regularization 当我们的λ很大时,hθ(x)≍θ0,是一条直线,会出现underfit:当我们的λ很小时(=0时),即相当于没有做regul ...

  9. 吴恩达机器学习笔记34-模型选择和交叉验证集(Model Selection and Train_Validation_Test Sets)

    假设我们要在10 个不同次数的二项式模型之间进行选择: 显然越高次数的多项式模型越能够适应我们的训练数据集,但是适应训练数据集并不代表着能推广至一般情况,我们应该选择一个更能适应一般情况的模型.我们需 ...

随机推荐

  1. 处处留心皆学问——由“display:inline-block;”导致的间距引发的思考。

    昨天在做一个demo时遇到了一个问题:我有五个li需要并排排列,然后自然而然的我给它们设了display:inline-block;但是,过了很久之后发现,除了我写的样式外,它默认有一个间距,我们都不 ...

  2. [Codeforces 933A]A Twisty Movement

    Description 题库链接 给你一个长度为 \(n\) 的只含有 \(1,2\) 的序列.你可以选择其中的一段 \([l,r]\) ,将区间翻转,翻转后使得单调不下降序列最长.求最长长度. \( ...

  3. [HDU 3507]Print Article

    Description Zero has an old printer that doesn't work well sometimes. As it is antique, he still lik ...

  4. permu(变态考试题)

    题目描述 给定一个严格递增的序列T,求有多少个T的排列S满足:∑min(T[i],S[i])=k 输入输出格式 输入格式: 第一行两个数n,k 第二行n个数,表示T 输出格式: 一个正整数表示答案,答 ...

  5. poj 1704 Georgia and Bob(阶梯博弈)

    Georgia and Bob Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9363   Accepted: 3055 D ...

  6. poj 1811 随机素数和大数分解(模板)

    Sample Input 2 5 10 Sample Output Prime 2 模板学习: 判断是否是素数,数据很大,所以用miller,不是的话再用pollard rho分解 miller : ...

  7. Linux input子系统 io控制字段【转】

    转自:http://www.cnblogs.com/leaven/archive/2011/02/12/1952793.html http://blog.csdn.net/guoshaobei/arc ...

  8. Linux常用命令大全(归类)

    最近都在和Linux打交道,这方面基础比较薄弱的我只好买了本鸟哥的书看看,感觉还不错.我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因, ...

  9. java 左移 右移

    public class test{ public static void main(String[] args) { int m = 9; int n = m >> 3; int p = ...

  10. 如何在Eclipse中快速添加main方法

    在创建类时自动添加,只需要勾选"public static void main(String[]   args)"