BZOJ 2034: [2009国家集训队]最大收益 [贪心优化 Hungary]
2034: [2009国家集训队]最大收益
题意:\(n \le 5000\)个区间\(l,r\le 10^8\),每个区间可以选一个点得到val[i]的价值,每个点最多选1次,求最大价值
线段树优化建边的做法见上一篇
论文
先把l,r离散化了,因为一个区间只选一个点,所以我们对于每个区间拿出一个点来就行了,方法是按l排序然后每个区间选左边界后的第一个未选点
当然这个点可能超出区间,所以我们要让区间与点匹配得到最大价值
- 法1:裸上二分图最大权匹配,即使线段树优化建边还是承受不了
- 法2:这个二分图很特殊,X的出边权值相同,我们可以贪心从大到小选择,用Hungary找增广路,复杂度\(O(n^3)\)
- 法3:这个二分图超级特殊啊,X中每个点出边的集合是连续的一段,我们很方便比较两个点的可匹配点集合的大小,如果可匹配点集合更大的都找不到未盖点小的根本不用找啊!我们修改一下Hungary的过程,记下当前选到Y的哪个点now,如果now未匹配则匹配now,否则比较now的匹配点与当前点可匹配集合的大小,让更大的去找匹配。这样就省去了每个点遍历所有出边的过程,复杂度\(O(n^2)\)
总结
让深入分析问题的性质! 贪心乱搞随便过
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define fir first
#define sec second
typedef long long ll;
const int N=1e4+5, INF=1e9;
inline ll read(){
char c=getchar();ll x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int n;
struct meow{
int l, r, val;
bool operator <(const meow &a) const {return val>a.val;}
}a[N];
bool cmp(const meow &a, const meow &b) {return a.l < b.l;}
int mp[N], m;
void disc() {
sort(a+1, a+1+n, cmp);
mp[++m]=a[1].l; int now=mp[m];
for(int i=2; i<=n; i++)
mp[++m] = max(now+1, a[i].l), now=mp[m];
for(int i=1; i<=n; i++) {
a[i].l = lower_bound(mp+1, mp+1+m, a[i].l) - mp;
int t = lower_bound(mp+1, mp+1+m, a[i].r) - mp;
a[i].r = mp[t] == a[i].r ? t : t-1;
}
}
int le[N];
bool find(int u, int now) {
if(now>a[u].r) return false;
if(!le[now]) {le[now]=u; return true;}
if(a[u].r > a[le[now]].r) return find(u, now+1);
else {
if(find(le[now], now+1)) {le[now]=u; return true;}
else return false;
}
}
void solve() {
sort(a+1, a+1+n);
ll ans=0;
for(int i=1; i<=n; i++) if(find(i, a[i].l)) ans+=a[i].val;
printf("%lld", ans);
}
int main() {
freopen("in","r",stdin);
n=read();
for(int i=1; i<=n; i++) a[i].l=read(), a[i].r=read()-1, a[i].val=read();
disc();
solve();
}
BZOJ 2034: [2009国家集训队]最大收益 [贪心优化 Hungary]的更多相关文章
- 【BZOJ2034】[2009国家集训队]最大收益 贪心优化最优匹配
[BZOJ2034][2009国家集训队]最大收益 Description 给出N件单位时间任务,对于第i件任务,如果要完成该任务,需要占用[Si, Ti]间的某个时刻,且完成后会有Vi的收益.求最大 ...
- BZOJ.2034.[2009国家集训队]最大收益(二分图匹配 贪心)
题目链接 双倍经验:BZOJ.4276.[ONTAK2015]Bajtman i Okrągły Robin(然而是个权限题.区间略有不同) \(Description\) 有\(n\)个任务,完成一 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子
二次联通门 : BZOJ 2038: [2009国家集训队]小Z的袜子 /* BZOJ 2038: [2009国家集训队]小Z的袜子 莫队经典题 但是我并不认为此题适合入门.. Answer = ∑ ...
- BZOJ 2039: [2009国家集训队]employ人员雇佣
2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 1369 Solved: 667[Submit ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7676 Solved: 3509[Subm ...
- BZOJ 2038 [2009国家集训队]小Z的袜子 莫队
2038: [2009国家集训队]小Z的袜子(hose) 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Descriptionw ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
随机推荐
- webpack + babel
webpack设计思想:不区分.png .css .js 等文件,都视为一个模块.通过require导入,loader加载器编译之后打包在一个主js文件里. 优势:减少http请求. 1. webpa ...
- Django App(一) StartApp
经过配置Pycharm在上一次的笔记中,已经解决了编写Django web程序调试的问题,这篇将记录Django官网提供的例子程序! 1.查看Pycharm terminal是否可用 ...
- 算法-java代码实现快速排序
快速排序 对于一个int数组,请编写一个快速排序算法,对数组元素排序. 给定一个int数组A及数组的大小n,请返回排序后的数组. 测试样例: [1,2,3,5,2,3],6 [1,2,2,3,3,5] ...
- php switch case语句用法
- oc 快排算法
直接复制粘贴就可以用了 - (void)viewDidLoad { [super viewDidLoad]; NSMutableArray *M_arr = [[NSMutableArray allo ...
- 谁能教我iCloud怎么用?
iCloud是苹果公司所提供的云端服务,使用者可以免费储存5GB的资料.你已经开始使用IOS5,并且你很兴奋的着手于将它同步至云服务层.以下就是怎样让你的设备更新至云服务层的非常简单的步骤.在你的iO ...
- 第一个ServiceStack服务框架
第一个ServiceStack服务框架 最近刚接触ServiceStack,就尝试着写了第一个服务框架,难免出错,还望同道们多多指正. 关于ServiceStack相关的概念不在做详细的叙述,网上研究 ...
- CentOS 7安装Tomcat8
一.安装环境 tomcat的安装依赖于Java JDK,需要先安装配置正确的JDK http://www.cnblogs.com/VoiceOfDreams/p/8376978.html 二.安装包准 ...
- 简单的线性规划-scipy
根据描述,我们用线性规划带约束来求解问题 # coding=utf-8 from scipy.optimize import linprog import numpy as np def maxGai ...
- Python中几种数据类型list, tuple,dict,set的使用演示
还是直接上代码,看着代码运行,看函数介绍 # coding=utf-8 # 1 list-列表 的用法 students = [1,2,3] a = 5 classmates = [students* ...