BZOJ 1072: [SCOI2007]排列perm [DP 状压 排列组合]
题意:给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)
100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15
看到整除应该往余数方面想
$f[s][i]$表示当前已经选择的数的集合为$s$,余数为$i$的方案数
枚举下一个数字,用更新的写法转移
注意是有重复元素的排列!除上个阶乘
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=,S=(<<)+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,d,a[],c[];
char s[];
int f[S][N];
int main(){
//freopen("in","r",stdin);
int T=read();
while(T--){
scanf("%s",s);d=read();
n=strlen(s);
memset(c,,sizeof(c));
for(int i=;i<n;i++) a[i]=s[i]-'',c[a[i]]++;
int All=<<n; for(int s=;s<All;s++) for(int i=;i<d;i++) f[s][i]=;
f[][]=;
for(int s=;s<All;s++)
for(int i=;i<d;i++) if(f[s][i]){
for(int j=;j<n;j++) if( (s&(<<j))== )
f[s|(<<j)][(i*+a[j])%d]+=f[s][i];
} int ans=f[All-][];
for(int i=;i<=;i++) while(c[i]) ans/=c[i],c[i]--;
printf("%d\n",ans);
}
}
BZOJ 1072: [SCOI2007]排列perm [DP 状压 排列组合]的更多相关文章
- [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】
题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...
- 【BZOJ】1072: [SCOI2007]排列perm(状压dp+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=1072 首先无限膜拜题解orz表示只会暴力orz 数据那么小我竟然想不到状压! orz 这种题可以取模 ...
- bzoj 1072: [SCOI2007]排列perm【状压dp】
先写了个next_permutation结果T了,于是开始写状压 设f[s][i]为选取状态为s,选的数模d为i的方案数,去重的话直接除以每个数字的出现次数的阶乘即可 #include<iost ...
- BZOJ 1072 [SCOI2007]安排perm 如压力DP
意甲冠军:联系 方法:状压DP? 题解:这题事实上没啥好写的.不算非常难,推一推就能搞出来. 首先看到这个问题,对于被d整除这个条件,非常easy就想到是取余数为0,所以想到可能状态中刚開始含有取余数 ...
- BZOJ1072 排列perm 【状压dp】
Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能 被2整除,其中末位为2的有30种,末位为4的有60种. Inpu ...
- BZOJ 2595: [Wc2008]游览计划 [DP 状压 斯坦纳树 spfa]【学习笔记】
传送门 题意:略 论文 <SPFA算法的优化及应用> http://www.cnblogs.com/lazycal/p/bzoj-2595.html 本题的核心就是求斯坦纳树: Stein ...
- 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...
- 【HDU】4352 XHXJ's LIS(数位dp+状压)
题目 传送门:QWQ 分析 数位dp 状压一下现在的$ O(nlogn) $的$ LIS $的二分数组 数据小,所以更新时直接暴力不用二分了. 代码 #include <bits/stdc++. ...
- BZOJ 1072: [SCOI2007]排列perm 状态压缩DP
1072: [SCOI2007]排列perm Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为 ...
随机推荐
- 如何给虚拟主机安装phpMyAdmin
很多虚拟主机没有phpMyAdmin,例如阿里云的云虚拟主机默认的数据库管理工具是DMS,这样好多朋友管理数据库时会觉得不方便.phpMyAdmin是比较大众和常用的Mysql数据库管理软件,我们可以 ...
- flume1.8 开发指南学习感悟
概述: Apache Flume是一个分布式.可用的系统,用于从许多不同的sources有效的收集并移动大量日志数据用于集中存储数据. 架构及数据流动模型: flume实际上就是一个Agent.Age ...
- 最小生成数之Kruskal算法
描述 随着小Hi拥有城市数目的增加,在之间所使用的Prim算法已经无法继续使用了--但是幸运的是,经过计算机的分析,小Hi已经筛选出了一些比较适合建造道路的路线,这个数量并没有特别的大. 所以问题变成 ...
- 项目启动log4j相关警告问题
在项目启动时出现了下面的警告: log4j:WARN custom level class [xxxxx] not found. 出现这个错误,不是log4j的问题,也是slf4j的问题,问题是因为自 ...
- 【开发技术】Xcode3与xcode4.2模板对比(Xcode4.2开发之一些变化)
Xcode3中IOS下的Application的模板如下: Navigation_Based Application OpenGL ES Application Tab Bar Application ...
- .netCore数据库迁移
程序包管理器控制台下Nuget 命令: 初始迁移命令: add-migration init -Context DAL.ProductContext 全称:migrations add Initial ...
- LinkedList 源码分析(JDK 1.8)
1.概述 LinkedList 是 Java 集合框架中一个重要的实现,其底层采用的双向链表结构.和 ArrayList 一样,LinkedList 也支持空值和重复值.由于 LinkedList 基 ...
- yarn 淘宝源安装与使用用法
Yarn 淘宝源 yarn config set registry https://registry.npm.taobao.org -g yarn config set sass_binary_sit ...
- 多IP服务器应用可以有效的降低成本
多IP的常规应用很多,SEO,EDM,VPN代理等.可以有效的解决成本,很多时候的租用一台高配置服务器通过XEN,hyper-V等虚拟化技术分割成VPS ,共用一台服务器就会大大的降低成本,这样就需要 ...
- 利用vanitygen生成比特币个性地址的教程
比特币怎么生成地址?大家都知道比特币地址都是以1开头的一串乱码,很多朋友会新建过一排地址然后在里面挑选,下面小编为大家分享下比特币生成个性地址方法. 其实就是使用vanitygen软件来生成个性化 ...