来自FallDream的博客,未经允许,请勿转载,谢谢。


Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段。Z国共有n座城市,一些城市之间由双向的公路所连接。非常神奇的是Z国的每个城市所处的经度都不相同,并且最多只和一个位于它东边的城市直接通过公路相连。Z国的首都是Z国政治经济文化旅游的中心,每天都有成千上万的人从Z国的其他城市涌向首都。为了使Z国的交通更加便利顺畅,小Z决定在Z国的公路系统中确定若干条规划路线,将其中的公路全部改建为铁路。我们定义每条规划路线为一个长度大于1的城市序列,每个城市在该序列中最多出现一次,序列中相邻的城市之间由公路直接相连(待改建为铁路)。并且,每个城市最多只能出现在一条规划路线中,也就是说,任意两条规划路线不能有公共部分。当然在一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要不断地换乘长途汽车和火车才能到达首都。我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽车的次数,而Z国的交通系统的“不便利值”为所有城市的不便利值的最大值,很明显首都的“不便利值”为0。小Z想知道如何确定规划路线修建铁路使得Z国的交通系统的“不便利值”最小,以及有多少种不同的规划路线的选择方案使得“不便利值”达到最小。当然方案总数可能非常大,小Z只关心这个天文数字modQ后的值。注意:规划路线1-2-3和规划路线3-2-1是等价的,即将一条规划路线翻转依然认为是等价的。两个方案不同当且仅当其中一个方案中存在一条规划路线不属于另一个方案。

n<=100000 Q<=120000000

第一问是树形dp,f[i][0/1/2]表示第i个点,向下建了0/1/2条道路的最长的长度的最小值。

可以用树剖证明答案是log级的。

这样就直接计算方案数就行了 g[i][0/1/2][k]表示第i个点向下建了0/1/2条道路,最长的路的长度是k的方案数

复杂度nlog^2n

#include<iostream>
#include<cstdio>
#define MN 100000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
}
int n,m,mod,head[MN+],cnt=,g[MN+],G[MN+],f[][][MN+],F[][][MN+];
struct edge{int to,next;}e[MN*+];
inline void ins(int f,int t)
{
e[++cnt]=(edge){t,head[f]};head[f]=cnt;
e[++cnt]=(edge){f,head[t]};head[t]=cnt;
} void Pre(int x,int fa)
{
g[x]=G[x]=;int mx=;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Pre(e[i].to,x);
G[x]=min(max(G[x],G[e[i].to]+),max(g[x],g[e[i].to]));
g[x]=min(max(mx,g[e[i].to]),max(g[x],G[e[i].to]+));
mx=max(mx,G[e[i].to]+);
}
G[x]=min(G[x],g[x]);
}
inline void R(int&x,int y){x+=y;x>=mod?x-=mod:;}
void Dp(int x,int fa)
{
f[][][x]=%mod;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Dp(e[i].to,x);
for(int j=;~j;--j)
for(int k=m;~k;--k)
for(int l=m;~l;--l)
{
if(j<) R(F[j+][max(l,k)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to])%mod);
R(F[j][max(l,k+)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to]+f[][k][e[i].to])%mod);
}
for(int j=;j<=;++j)
for(int k=;k<=m;++k)
f[j][k][x]=F[j][k][x],F[j][k][x]=;
}
} int main()
{
n=read();m=read();mod=read();
if(m<n-) return *puts("-1\n-1");
for(int i=;i<n;++i) ins(read(),read());
Pre(,);m=G[];
Dp(,);
printf("%d\n%d\n",m,(f[][m][]+f[][m][]+f[][m][])%mod);
return ;
}

[bzoj1063][Noi2008]道路设计的更多相关文章

  1. BZOJ1063 NOI2008 道路设计 树形DP

    题目传送门: BZOJ 题意精简版:给出一棵树,在一种方案中可以将树的若干链上的所有边的边权改为$0$,但需要保证任意两条链之间没有交点.问最少的一种方案,使得从根节点到其他节点经过的边的边权和的最大 ...

  2. 1063: [Noi2008]道路设计 - BZOJ

    Description Z 国坐落于遥远而又神奇的东方半岛上,在小Z 的统治时代公路成为这里主要的交通手段.Z 国共有n 座城市,一些城市之间由双向的公路所连接.非常神奇的是Z 国的每个城市所处的经度 ...

  3. [NOI2008] 道路设计

    link 思维题目,题目描述其实说的就是这是一个树,想到树形$dp$.若两个铁路不向交,则每个点的度都$\leq 2$.所以现在就可以搞dp了. 怎么去维护答案,容易想到设$dp(i,j,k)$为现在 ...

  4. 并不对劲的[Noi2008]道路设计

    Time Limit: 20 Sec Memory Limit: 162 MB Submit: 931 Solved: 509 [Submit][Status][Discuss] Descriptio ...

  5. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. dp专练

    dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...

  8. 【BZOJ1063】【NOI2008】道路设计(动态规划)

    [BZOJ1063][NOI2008]道路设计(动态规划) 题面 BZOJ 题解 发现每个点最多只能被修一次等价于每个点最多只能和两条铁路相邻 考虑一个\(dp\) 设\(f[i][0/1/2]\)表 ...

  9. 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计

    @ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...

随机推荐

  1. Python 实现火车票查询工具

    注意:由于 12306 的接口经常变化,课程内容可能很快过期,如果遇到接口问题,需要根据最新的接口对代码进行适当修改才可以完成实验. 一.实验简介 当你想查询一下火车票信息的时候,你还在上 12306 ...

  2. HTML5文件操作API

    HTML5文件操作API       一.文件操作API 在之前我们操作本地文件都是使用flash.silverlight或者第三方的activeX插件等技术,由于使用了这些技术后就很难进行跨平台.或 ...

  3. 项目Beta冲刺Day6

    项目进展 李明皇 今天解决的进度 进行前后端联动调试 明天安排 完善程序运行逻辑 林翔 今天解决的进度 服务器端发布消息,删除消息,检索消息,个人发布的action 明天安排 图片功能遇到问题,微信小 ...

  4. bzoj千题计划128:bzoj4552: [Tjoi2016&Heoi2016]排序

    http://www.lydsy.com/JudgeOnline/problem.php?id=4552 二分答案 把>=mid 的数看做1,<mid 的数看做0 这样升序.降序排列相当于 ...

  5. 前端之bootstrap模态框

    简介:模态框(Modal)是覆盖在父窗体上的子窗体.通常,目的是显示来自一个单独的源的内容,可以在不离开父窗体的情况下有一些互动.子窗体可提供信息.交互等. Modal简介 Modal实现弹出表单 M ...

  6. [笔试题目]使用Stringbuffer无 参的构造函数创建 一个对象时,默认的初始容量是多少? 如果长度不够使用了,自动增长多少倍?

    [笔试题目] 使用Stringbuffer无 参的构造函数创建 一个对象时,默认的初始容量是多少? 如果长度不够使用了,自动增长多少倍? StringBuffer 底层是依赖了一个字符数组才能存储字符 ...

  7. awk sed tr替换换行符为逗号,并合并为一行

    在群里看到的.记录以备用.  sed 帮助命令:http://man.linuxde.net/sed 文件里有如下行,我想将每行的回车符替换为逗号,并将所有行合并到一行,用awk或sed怎么写啊TOP ...

  8. Django REST framework+Vue 打造生鲜超市(一)

    一.项目介绍 1.1.掌握的技术 Vue + Django Rest Framework 前后端分离技术 彻底玩转restful api 开发流程 Django Rest Framework 的功能实 ...

  9. 常用cmd代码片段及.net core打包脚本分享

    bat基础命令 注释:rem 注释~~ 输出:echo hello world 接收用户输入:%1 %2,第n个变量就用%n表示 当前脚本路径:%~dp0 当前目录路径:%cd% 设置变量:set c ...

  10. SpringCloud的DataRest(一)

    一.概念与定义 Spring Data Rest 基于Spring Data的repository,可以把 repository 自动输出为REST资源, 这样做的好处: 可以免去大量的 contro ...