[bzoj1063][Noi2008]道路设计
来自FallDream的博客,未经允许,请勿转载,谢谢。
Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段。Z国共有n座城市,一些城市之间由双向的公路所连接。非常神奇的是Z国的每个城市所处的经度都不相同,并且最多只和一个位于它东边的城市直接通过公路相连。Z国的首都是Z国政治经济文化旅游的中心,每天都有成千上万的人从Z国的其他城市涌向首都。为了使Z国的交通更加便利顺畅,小Z决定在Z国的公路系统中确定若干条规划路线,将其中的公路全部改建为铁路。我们定义每条规划路线为一个长度大于1的城市序列,每个城市在该序列中最多出现一次,序列中相邻的城市之间由公路直接相连(待改建为铁路)。并且,每个城市最多只能出现在一条规划路线中,也就是说,任意两条规划路线不能有公共部分。当然在一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要不断地换乘长途汽车和火车才能到达首都。我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽车的次数,而Z国的交通系统的“不便利值”为所有城市的不便利值的最大值,很明显首都的“不便利值”为0。小Z想知道如何确定规划路线修建铁路使得Z国的交通系统的“不便利值”最小,以及有多少种不同的规划路线的选择方案使得“不便利值”达到最小。当然方案总数可能非常大,小Z只关心这个天文数字modQ后的值。注意:规划路线1-2-3和规划路线3-2-1是等价的,即将一条规划路线翻转依然认为是等价的。两个方案不同当且仅当其中一个方案中存在一条规划路线不属于另一个方案。
n<=100000 Q<=120000000
第一问是树形dp,f[i][0/1/2]表示第i个点,向下建了0/1/2条道路的最长的长度的最小值。
可以用树剖证明答案是log级的。
这样就直接计算方案数就行了 g[i][0/1/2][k]表示第i个点向下建了0/1/2条道路,最长的路的长度是k的方案数
复杂度nlog^2n
#include<iostream>
#include<cstdio>
#define MN 100000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
}
int n,m,mod,head[MN+],cnt=,g[MN+],G[MN+],f[][][MN+],F[][][MN+];
struct edge{int to,next;}e[MN*+];
inline void ins(int f,int t)
{
e[++cnt]=(edge){t,head[f]};head[f]=cnt;
e[++cnt]=(edge){f,head[t]};head[t]=cnt;
} void Pre(int x,int fa)
{
g[x]=G[x]=;int mx=;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Pre(e[i].to,x);
G[x]=min(max(G[x],G[e[i].to]+),max(g[x],g[e[i].to]));
g[x]=min(max(mx,g[e[i].to]),max(g[x],G[e[i].to]+));
mx=max(mx,G[e[i].to]+);
}
G[x]=min(G[x],g[x]);
}
inline void R(int&x,int y){x+=y;x>=mod?x-=mod:;}
void Dp(int x,int fa)
{
f[][][x]=%mod;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Dp(e[i].to,x);
for(int j=;~j;--j)
for(int k=m;~k;--k)
for(int l=m;~l;--l)
{
if(j<) R(F[j+][max(l,k)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to])%mod);
R(F[j][max(l,k+)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to]+f[][k][e[i].to])%mod);
}
for(int j=;j<=;++j)
for(int k=;k<=m;++k)
f[j][k][x]=F[j][k][x],F[j][k][x]=;
}
} int main()
{
n=read();m=read();mod=read();
if(m<n-) return *puts("-1\n-1");
for(int i=;i<n;++i) ins(read(),read());
Pre(,);m=G[];
Dp(,);
printf("%d\n%d\n",m,(f[][m][]+f[][m][]+f[][m][])%mod);
return ;
}
[bzoj1063][Noi2008]道路设计的更多相关文章
- BZOJ1063 NOI2008 道路设计 树形DP
题目传送门: BZOJ 题意精简版:给出一棵树,在一种方案中可以将树的若干链上的所有边的边权改为$0$,但需要保证任意两条链之间没有交点.问最少的一种方案,使得从根节点到其他节点经过的边的边权和的最大 ...
- 1063: [Noi2008]道路设计 - BZOJ
Description Z 国坐落于遥远而又神奇的东方半岛上,在小Z 的统治时代公路成为这里主要的交通手段.Z 国共有n 座城市,一些城市之间由双向的公路所连接.非常神奇的是Z 国的每个城市所处的经度 ...
- [NOI2008] 道路设计
link 思维题目,题目描述其实说的就是这是一个树,想到树形$dp$.若两个铁路不向交,则每个点的度都$\leq 2$.所以现在就可以搞dp了. 怎么去维护答案,容易想到设$dp(i,j,k)$为现在 ...
- 并不对劲的[Noi2008]道路设计
Time Limit: 20 Sec Memory Limit: 162 MB Submit: 931 Solved: 509 [Submit][Status][Discuss] Descriptio ...
- Noip前的大抱佛脚----赛前任务
赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- dp专练
dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...
- 【BZOJ1063】【NOI2008】道路设计(动态规划)
[BZOJ1063][NOI2008]道路设计(动态规划) 题面 BZOJ 题解 发现每个点最多只能被修一次等价于每个点最多只能和两条铁路相邻 考虑一个\(dp\) 设\(f[i][0/1/2]\)表 ...
- 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计
@ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...
随机推荐
- java第5章学习总结
学号20145336 <Java程序设计>第5周学习总结 教材学习内容总结 try catch JVM会先尝试执行try区块中的内容,若发生错误且与catch后面的类型相符,则执行catc ...
- PostgreSQL 配置安装
Mac 安装 http://postgresapp.com/ 创建和删除数据库用户 对应命令如下(在postgres=# 环境下):1.查看数据库用户列表: \du2.创建数据库用户: create ...
- js判断flash文件是否加载完毕
轮询判断加载进度 img的加载完成有onload方法,一直不知道该怎么判断swf文件是否加载完毕了? 在应用中使用了轮询判断加载进度值PercentLoaded是否达到100,经测试,可以达到效果. ...
- 02-移动端开发教程-CSS3新特性(中)
1. 新的背景 背景在CSS3中也得到很大程度的增强,比如背景图片尺寸.背景裁切区域.背景定位参照点.多重背景等. 1.1 background-size设置背景图片的尺寸 cover会自动调整缩放比 ...
- 10-TypeScript中的接口
接口是一种规约的约定,从接口继承的类必须实现接口的约定.在高级开发中,通常接口是用于实现各种设计模式的基础,没有接口,设计模式无从谈起. 定义接口: interface ILog{ recordlog ...
- react中的DOM操作
前面的话 某些情况下需要在典型数据流外强制修改子代.要修改的子代可以是 React 组件实例,也可以是 DOM 元素.这时就要用到refs来操作DOM 使用场景 下面是几个适合使用 refs 的情况 ...
- JAVA_SE基础——26.[深入解析]局部变量与成员变量的区别
黑马程序员入学blog ... 如果这章节很难懂的话应该返回去先看 JAVA_SE基础--10.变量的作用域 定义的位置上区别: 1. 成员变量是定义在方法之外,类之内的. 2. 局部变量是定义在方 ...
- Vue2学习小记-给Vue2路由导航钩子和axios拦截器做个封装
1.写在前面 最近在学习Vue2,遇到有些页面请求数据需要用户登录权限.服务器响应不符预期的问题,但是总不能每个页面都做单独处理吧,于是想到axios提供了拦截器这个好东西,再于是就出现了本文. 2. ...
- 新概念英语(1-7)Are you a teacher?
What is Robert's job? A:I am a new student. My name is Robert. B:Nice to meet you. My name's Sophie. ...
- 【阿里聚安全·安全周刊】 全美警局已普遍拥有破解 iPhone 的能力 | 女黑客破解任天堂Switch,称硬件漏洞无法修复
本周的七个关键词: 破解 iPhone丨 女黑客破解任天堂丨假的身份证 丨 扫黄打非丨华盛顿特区发现手机间谍设备 丨 Telegram被俄罗斯监管机构告上法庭丨价值5万美金的Firefox浏览器漏洞 ...