来自FallDream的博客,未经允许,请勿转载,谢谢。


Z国坐落于遥远而又神奇的东方半岛上,在小Z的统治时代公路成为这里主要的交通手段。Z国共有n座城市,一些城市之间由双向的公路所连接。非常神奇的是Z国的每个城市所处的经度都不相同,并且最多只和一个位于它东边的城市直接通过公路相连。Z国的首都是Z国政治经济文化旅游的中心,每天都有成千上万的人从Z国的其他城市涌向首都。为了使Z国的交通更加便利顺畅,小Z决定在Z国的公路系统中确定若干条规划路线,将其中的公路全部改建为铁路。我们定义每条规划路线为一个长度大于1的城市序列,每个城市在该序列中最多出现一次,序列中相邻的城市之间由公路直接相连(待改建为铁路)。并且,每个城市最多只能出现在一条规划路线中,也就是说,任意两条规划路线不能有公共部分。当然在一般情况下是不可能将所有的公路修建为铁路的,因此从有些城市出发去往首都依然需要通过乘坐长途汽车,而长途汽车只往返于公路连接的相邻的城市之间,因此从某个城市出发可能需要不断地换乘长途汽车和火车才能到达首都。我们定义一个城市的“不便利值”为从它出发到首都需要乘坐的长途汽车的次数,而Z国的交通系统的“不便利值”为所有城市的不便利值的最大值,很明显首都的“不便利值”为0。小Z想知道如何确定规划路线修建铁路使得Z国的交通系统的“不便利值”最小,以及有多少种不同的规划路线的选择方案使得“不便利值”达到最小。当然方案总数可能非常大,小Z只关心这个天文数字modQ后的值。注意:规划路线1-2-3和规划路线3-2-1是等价的,即将一条规划路线翻转依然认为是等价的。两个方案不同当且仅当其中一个方案中存在一条规划路线不属于另一个方案。

n<=100000 Q<=120000000

第一问是树形dp,f[i][0/1/2]表示第i个点,向下建了0/1/2条道路的最长的长度的最小值。

可以用树剖证明答案是log级的。

这样就直接计算方案数就行了 g[i][0/1/2][k]表示第i个点向下建了0/1/2条道路,最长的路的长度是k的方案数

复杂度nlog^2n

#include<iostream>
#include<cstdio>
#define MN 100000
using namespace std;
inline int read()
{
int x = , f = ; char ch = getchar();
while(ch < '' || ch > ''){ if(ch == '-') f = -; ch = getchar();}
while(ch >= '' && ch <= ''){x = x * + ch - '';ch = getchar();}
return x * f;
}
int n,m,mod,head[MN+],cnt=,g[MN+],G[MN+],f[][][MN+],F[][][MN+];
struct edge{int to,next;}e[MN*+];
inline void ins(int f,int t)
{
e[++cnt]=(edge){t,head[f]};head[f]=cnt;
e[++cnt]=(edge){f,head[t]};head[t]=cnt;
} void Pre(int x,int fa)
{
g[x]=G[x]=;int mx=;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Pre(e[i].to,x);
G[x]=min(max(G[x],G[e[i].to]+),max(g[x],g[e[i].to]));
g[x]=min(max(mx,g[e[i].to]),max(g[x],G[e[i].to]+));
mx=max(mx,G[e[i].to]+);
}
G[x]=min(G[x],g[x]);
}
inline void R(int&x,int y){x+=y;x>=mod?x-=mod:;}
void Dp(int x,int fa)
{
f[][][x]=%mod;
for(int i=head[x];i;i=e[i].next)
if(e[i].to!=fa)
{
Dp(e[i].to,x);
for(int j=;~j;--j)
for(int k=m;~k;--k)
for(int l=m;~l;--l)
{
if(j<) R(F[j+][max(l,k)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to])%mod);
R(F[j][max(l,k+)][x],1LL*f[j][l][x]*(f[][k][e[i].to]+f[][k][e[i].to]+f[][k][e[i].to])%mod);
}
for(int j=;j<=;++j)
for(int k=;k<=m;++k)
f[j][k][x]=F[j][k][x],F[j][k][x]=;
}
} int main()
{
n=read();m=read();mod=read();
if(m<n-) return *puts("-1\n-1");
for(int i=;i<n;++i) ins(read(),read());
Pre(,);m=G[];
Dp(,);
printf("%d\n%d\n",m,(f[][m][]+f[][m][]+f[][m][])%mod);
return ;
}

[bzoj1063][Noi2008]道路设计的更多相关文章

  1. BZOJ1063 NOI2008 道路设计 树形DP

    题目传送门: BZOJ 题意精简版:给出一棵树,在一种方案中可以将树的若干链上的所有边的边权改为$0$,但需要保证任意两条链之间没有交点.问最少的一种方案,使得从根节点到其他节点经过的边的边权和的最大 ...

  2. 1063: [Noi2008]道路设计 - BZOJ

    Description Z 国坐落于遥远而又神奇的东方半岛上,在小Z 的统治时代公路成为这里主要的交通手段.Z 国共有n 座城市,一些城市之间由双向的公路所连接.非常神奇的是Z 国的每个城市所处的经度 ...

  3. [NOI2008] 道路设计

    link 思维题目,题目描述其实说的就是这是一个树,想到树形$dp$.若两个铁路不向交,则每个点的度都$\leq 2$.所以现在就可以搞dp了. 怎么去维护答案,容易想到设$dp(i,j,k)$为现在 ...

  4. 并不对劲的[Noi2008]道路设计

    Time Limit: 20 Sec Memory Limit: 162 MB Submit: 931 Solved: 509 [Submit][Status][Discuss] Descriptio ...

  5. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. dp专练

    dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...

  8. 【BZOJ1063】【NOI2008】道路设计(动态规划)

    [BZOJ1063][NOI2008]道路设计(动态规划) 题面 BZOJ 题解 发现每个点最多只能被修一次等价于每个点最多只能和两条铁路相邻 考虑一个\(dp\) 设\(f[i][0/1/2]\)表 ...

  9. 【NOI题解】【bzoj题解】NOI2008 bzoj1063 道路设计

    @ACMLCZH学长出的毒瘤题T3.再也不是“善良”的出题人了. 题意:bzoj. 题解: 经典的树形DP题目,屡见不鲜了,然而我还是没有写出来. 这一类的题目有很多,例如这里的C题. 主要套路是把对 ...

随机推荐

  1. iOS开发之Objective-C与JavaScript的交互

    UIWebView是iOS最常用的SDK之一,它有一个stringByEvaluatingJavaScriptFromString方法可以将javascript嵌入页面中,通过这个方法我们可以在iOS ...

  2. fread函数详解

    函数原型: size_t   fread(   void   *buffer,   size_t   size,   size_t   count,   FILE   *stream   )    b ...

  3. 【iOS】OC-AFNetworking 2.0 跟踪文件上传进度

    我是较新的 AFNetworking 2.0.使用下面的代码片段,我已经能够成功地将一张照片上传到我的 url.我想要跟踪的增量上载进度,但我找不到这样做 2.0 版的示例.我的应用程序是 iOS 7 ...

  4. Struts2之Struts2的下载与安装

    Struts2的下载 登陆struts的官网 下载Full Distribution这个选项的struts2的包. 这是Struts2的完整版,里面包括Struts2的实例应用,空实例应用,核心库,源 ...

  5. js的构造函数共用事例

    在使用构造函数去实现一种功能时,我们有时候往往需要实现这个功能,会因此产生多个堆内对象.这样就会造成堆内存滥用.占用不该占用的空间.为此我们可以利用函数把共用的内容封装起来.放便我们的使用.很多东西其 ...

  6. 我的前端故事----来聊聊react-native应用的健康监控

    监控什么 今天我们来聊聊如何监控你的应用程序,这里的监控说的不是让我们去监控用户,而是监控应用的健康状态,什么是健康状态呢?对于后端的同学来说,在微服务的架构下,每个子服务是否正常工作.返回的结果是否 ...

  7. 阿里云API网关(11)API的三种安全认证方式

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  8. 定点化_mif文件生成

    clc; %全屏清零 clear all; %变量清零 N=^; %设置ROM深度(字变量)的变量参数, s_p=:; %正弦波一个周期的采样点数 sin_data=sin(*pi*s_p/N); % ...

  9. Python/MySQL(二、表操作以及连接)

    Python/MySQL(二.表操作以及连接) mysql表操作: 主键:一个表只能有一个主键.主键可以由多列组成. 外键 :可以进行联合外键,操作. mysql> create table y ...

  10. SQL优化(SQL TUNING)之10分钟完成亿级数据量性能优化(SQL调优)

    前几天,一个用户研发QQ找我,如下: 自由的海豚. 16:12:01 岛主,我的一条SQL查不出来结果,能帮我看看不? 兰花岛主 16:12:10 多久不出结果? 自由的海豚 16:12:17 多久都 ...