Description

Pine开始了从S地到T地的征途。
从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。
Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助Pine求出最小方差是多少。
设方差是v,可以证明,v×m^2是一个整数。为了避免精度误差,输出结果时输出v×m^2。

Input

第一行两个数 n、m。
第二行 n 个数,表示 n 段路的长度

Output

一个数,最小方差乘以 m^2 后的值

Sample Input

5 2
1 2 5 8 6

Sample Output

36

HINT

1≤n≤3000,保证从 S 到 T 的总路程不超过 30000

忘了附题解:

式子拆开后等于

m*∑xi^2 - sum^2

所以写出dp方程:

f[i][j]=f[i-1][k]+(s[j]-s[k])^2

于是直接斜率优化

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int s[],f[][],q[],head,tail,n,m,ans=2e9;
double A(int i, int p)
{
return (double)f[p][i] + s[i]*s[i];
}
double slope(int j,int k,int p)
{
return (double)(A(j,p)-A(k,p))/(double)(s[j]-s[k]);
}
int main()
{int i,j;
cin>>n>>m;
for (i=;i<=n;i++)
scanf("%d",&s[i]),s[i]+=s[i-];
for (i=;i<=n;i++)
f[][i]=s[i]*s[i];
for (i=;i<=m;i++)
{
head=;tail=;
q[]=i-;
for (j=i;j<=n;j++)
{
while (head<tail&&slope(q[head],q[head+],i-)<=2.0*s[j]) head++;
f[i][j]=f[i-][q[head]]+(s[q[head]]-s[j])*(s[q[head]]-s[j]);
while (head<tail&&slope(q[tail-],q[tail],i-)>=slope(q[tail],j,i-)) tail--;
tail++;
q[tail]=j;
}
}
cout<<f[m][n]*m-s[n]*s[n];
}

[Sdoi2016]征途的更多相关文章

  1. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  2. 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 532  Solved: 337[Submit][Status][ ...

  3. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  4. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  5. BZOJ_4518_[Sdoi2016]征途_斜率优化

    BZOJ_4518_[Sdoi2016]征途_斜率优化 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到 ...

  6. 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途

    斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ;   1<=j<i (O(n^2)暴力)这样一个式子,首 ...

  7. luoguP4072 [SDOI2016]征途

    [SDOI2016]征途 大体 大概就是推推公式,发现很傻逼的\(n^3\)DP get60 进一步我们发现状态不能入手,考虑优化转移 套个斜率优化板子 每一层转移来一次斜率优化 思路 先便便式子 \ ...

  8. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  9. BZOJ4518 Sdoi2016 征途 【斜率优化DP】 *

    BZOJ4518 Sdoi2016 征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m ...

  10. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

随机推荐

  1. c语言博客作业-指针

    一.PTA实验作业 题目1: 1. 本题PTA提交列表 2. 设计思路(用代码表示扣分) 定义整型变量i,count记录平均分,实型变量sum保存总分 for i=0 to n sum = sum+* ...

  2. 算法——算法时间复杂度的计算和大O阶的推导

    在算法分析中,我们将语句总的执行次数记为T(n)进而分析T(n)随n的变化情况确认T(n)的数量级.一般情况下,T(n)随n增大变化最缓慢的算法为最优算法. 根据定义,T(n)的求法是很简单的,也就是 ...

  3. 201621123043《java程序设计》第五周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 接口. Comparable接口 .Comparator接口.compareTo. 1.2 尝试使用思维导图将这些关键词组织起来 ...

  4. REST or RPC?

    1 概念 1.1 RPC RPC(Remote Procedure Call)-远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议.RPC协议假定某些传输协议的存 ...

  5. 根据HTML5的新方法 drag & drop 方法实现表格拖拽实例

    上一次学习了html5的drag和drop方法,传送门  就自己写了个例子加深自己对drag和drop的理解.不过一开始不是很简单,遇到了不少问题.还好网络万能的,什么都能查到,总算完成了. 说明和详 ...

  6. Java KeyTool command

    Create a new key: keytool -genkey -alias keyAlias -keyalg RSA  -validity 1000 -keystore d:\keyPath\k ...

  7. pygame事件之——控制物体(飞机)的移动

    近来想用pygame做做游戏,在 xishui 大神的目光博客中学了学这东西,就上一段自己写的飞机大战的代码,主要是对键盘控制飞机的移动做了相关的优化 # -*- coding: utf-8 -*- ...

  8. Swagger: 一个restful接口文档在线生成+功能测试软件

    一.什么是 Swagger? Swagger 是一款RESTFUL接口的文档在线自动生成+功能测试功能软件.Swagger 是一个规范和完整的框架,用于生成.描述.调用和可视化 RESTful 风格的 ...

  9. eclipse+Maven插件报错:-Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.

    问题描述: eclipse indigo+maven3.3.3+jdk1.70 maven插件执行报错:-Dmaven.multiModuleProjectDirectory system prope ...

  10. spring6——AOP的编程术语

    面向切面编程作为一种编程思想,允许我们对程序的执行流程及执行结果动态的做出改变,以达到业务逻辑之间的分层管理或者是目标对象方法的增强,spring框架很好的实现了这种编程思想,让我们可以对主业务逻辑和 ...