[Jsoi2011]分特产
Description
Input
Output
Sample Input
1 3 3 5
Sample Output
对于总共n个人,很容易想到第i个物品,分出的方案数为C(n−1,a[i]+n−1),其中a[i]为个数。
但是这样做就会导致有人分不到特产。
考虑容斥,我们-一个人分不到的情况 +两个人分不到的情况 -三个人...
我们直接限定隔板的数目来强制一些人分不到特产,即方案数变为C(n−1−i,a[j]+n−1−i),其中i个人强制分不到,第j个物品。
注意最后,因为分不到的人可以是任意的,所以每次容斥还要*C(i,n)。
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
int Mod=;
ll A[],ans,B[];
int a[];
int n,m;
ll C(int x,int y)
{
ll fz=B[y];
ll fm=(A[y-x]*A[x])%Mod;
return (fz*fm)%Mod;
}
int main()
{int i,j;
cin>>n>>m;
for (i=;i<=m;i++)
scanf("%d",&a[i]);
A[]=;B[]=;B[]=;A[]=;
for (i=;i<=;i++)
A[i]=((Mod-Mod/i)*A[Mod%i])%Mod,B[i]=(B[i-]*i)%Mod;
for (i=;i<=;i++)
A[i]=(A[i]*A[i-])%Mod;
for (i=;i<n;i++)
{
ll cnt=;
for (j=;j<=m;j++)
{
cnt*=C(n--i,a[j]+n--i);
cnt%=Mod;
}
cnt=cnt*C(i,n)%Mod;
if (i%==) ans=(ans+cnt)%Mod;
else ans=(ans-cnt+Mod)%Mod;
}
cout<<ans;
}
[Jsoi2011]分特产的更多相关文章
- BZOJ 4710: [Jsoi2011]分特产 [容斥原理]
4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 4710: [Jsoi2011]分特产
4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...
- 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 99 Solved: 65 Description JYY 带 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ 4710 [Jsoi2011]分特产 解题报告
4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- 题解-JSOI2011 分特产
题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...
- ●BZOJ 4710 [Jsoi2011]分特产
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...
随机推荐
- js的 == 和 ===的区别
1.对于string,number等基础类型,==和===是有区别的 不同类型间比较,==之比较转化成同一类型后的值看值是否相等,===如果类型不同,其结果就是不等,同类型比较,直接进行"值 ...
- Linux 帳號管理與 ACL 權限設定
1. Linux 的账号与群组1.1 使用者识别: UID 与 GID1.2 使用者账号:/etc/passwd, /etc/shadow1.3 关于群组: 有效与初始群组. groups, newg ...
- 不高兴的小名 nyoj
不高兴的小明 时间限制:3000 ms | 内存限制:65535 KB 难度:1 描述 小明又出问题了.妈妈认为聪明的小明应该更加用功学习而变的更加厉害,所以小明除了上学之外,还要参加妈 ...
- JAVA_SE基础——12.运算符的优先级
优先级 操作符 含义 关联性 用法 ---------------------------------------------------------------- 1 [ ] 数组下标 左 arra ...
- EasyUI 修改 Messager 消息框大小
需求是要修改确认消息窗口的大小. 简单的调用方法是这样的: $.messager.confirm('操作确认', '确定批量编辑文章?', function (r) { ... } 这个时候生成的弹窗 ...
- [2]十道算法题【Java实现】
前言 清明不小心就拖了两天没更了-- 这是十道算法题的第二篇了-上一篇回顾:十道简单算法题 最近在回顾以前使用C写过的数据结构和算法的东西,发现自己的算法和数据结构是真的薄弱,现在用Java改写一下, ...
- JAVA中的Log4j
Log4j的简介: 使用异常处理机制==>异常 使用debug调试(必须掌握) System.out.Print(); 001.控制台行数有限制 002.影响性能 ...
- SpringCloud的服务注册中心(二)注册中心服务端和两个微服务应用客户端
一.构建EurekaServer工程 1.pom.xml 2.application.yml 3. EurekaServerApp.java 4.启动EurekaServer 二.构建部署 Eurek ...
- Django 框架介绍
Django 框架介绍 MVC框架和MTV框架 简单了解一下什么是MVC框架.MVC(Model View Controller),是模型(model)-视图(view)-控制器(controller ...
- 使用 C#/.NET Core 实现单体设计模式
本文的概念内容来自深入浅出设计模式一书 由于我在给公司做内培, 所以最近天天写设计模式的文章.... 单体模式 Singleton 单体模式的目标就是只创建一个实例. 实际中有很多种对象我们可能只需要 ...