Description

JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任
何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花

Input

输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000

Output

输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。

Sample Input

5 4
1 3 3 5

Sample Output

384835

对于总共n个人,很容易想到第i个物品,分出的方案数为C(n−1,a[i]+n−1),其中a[i]为个数。

但是这样做就会导致有人分不到特产。

考虑容斥,我们-一个人分不到的情况  +两个人分不到的情况  -三个人...

我们直接限定隔板的数目来强制一些人分不到特产,即方案数变为C(n−1−i,a[j]+n−1−i),其中i个人强制分不到,第j个物品。

注意最后,因为分不到的人可以是任意的,所以每次容斥还要*C(i,n)。

 #include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
int Mod=;
ll A[],ans,B[];
int a[];
int n,m;
ll C(int x,int y)
{
ll fz=B[y];
ll fm=(A[y-x]*A[x])%Mod;
return (fz*fm)%Mod;
}
int main()
{int i,j;
cin>>n>>m;
for (i=;i<=m;i++)
scanf("%d",&a[i]);
A[]=;B[]=;B[]=;A[]=;
for (i=;i<=;i++)
A[i]=((Mod-Mod/i)*A[Mod%i])%Mod,B[i]=(B[i-]*i)%Mod;
for (i=;i<=;i++)
A[i]=(A[i]*A[i-])%Mod;
for (i=;i<n;i++)
{
ll cnt=;
for (j=;j<=m;j++)
{
cnt*=C(n--i,a[j]+n--i);
cnt%=Mod;
}
cnt=cnt*C(i,n)%Mod;
if (i%==) ans=(ans+cnt)%Mod;
else ans=(ans-cnt+Mod)%Mod;
}
cout<<ans;
}

[Jsoi2011]分特产的更多相关文章

  1. BZOJ 4710: [Jsoi2011]分特产 [容斥原理]

    4710: [Jsoi2011]分特产 题意:m种物品分给n个同学,每个同学至少有一个物品,求方案数 对于每种物品是独立的,就是分成n组可以为空,然后可以用乘法原理合起来 容斥容斥 \[ 每个同学至少 ...

  2. bzoj4710: [Jsoi2011]分特产 组合+容斥

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 289  Solved: 198[Submit][Status] ...

  3. bzoj4710 [Jsoi2011]分特产(容斥)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 814  Solved: 527[Submit][Status] ...

  4. 4710: [Jsoi2011]分特产

    4710: [Jsoi2011]分特产 链接 分析: 容斥原理+隔板法. 代码: #include<cstdio> #include<algorithm> #include&l ...

  5. 【BZOJ 4710】 4710: [Jsoi2011]分特产 (容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 99  Solved: 65 Description JYY 带 ...

  6. [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)

    4710: [Jsoi2011]分特产 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 395  Solved: 262[Submit][Status] ...

  7. BZOJ 4710 [Jsoi2011]分特产 解题报告

    4710 [Jsoi2011]分特产 题意 给定\(n\)个集合,每个集合有相同的\(a_i\)个元素,不同的集合的元素不同.将所有的元素分给\(m\)个不同位置,要求每个位置至少有一个元素,求分配方 ...

  8. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  9. 题解-JSOI2011 分特产

    题面 JSOI2011 分特产 有 \(n\) 个不同的盒子和 \(m\) 种不同的球,第 \(i\) 种球有 \(a_i\) 个,用光所有球,求使每个盒子不空的方案数. 数据范围:\(1\le n, ...

  10. ●BZOJ 4710 [Jsoi2011]分特产

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4710 题解: 容斥,组合先看看这个方案数的计算:把 M 个相同的东西分给 N 个人,每个人可 ...

随机推荐

  1. 测试与发布(Beta版本)

    评分基准: 按时交 - 有分(测试报告-10分,发布说明-10分,展示博客-10分),检查的项目包括后文的两个方面 测试报告(基本完成5分,根据完成质量加分,原则上不超过满分10分) 发布说明(基本完 ...

  2. C语言博客作业-结构体

    一.PTA实验作业 6-2 按等级统计学生成绩 1. 本题PTA提交列表 2. 设计思路 定义i,count存放不及格人数 for i=0 to n-1{ 判断 score的值的范围 if 100&g ...

  3. 需求分析&原型改进

    需求&原型改进 一.给目标用户展现原型,与目标用户进一步沟通理解需求. 1.用户痛点:需要随时随地练习四则运算,并能看到用户的统计数据. 2.用户反馈:较好地解决练习需求,若能加入班级概念则更 ...

  4. NetFPGA-1G-CML点亮 LED

    前言 用vivado建立工程的时候选择的型号为:XC7K325tffg676-1 在以下代码文件中,仿真与设计都没有问题.在xdc文件中的时钟约束与锁相环配置中还存在问题,没有寻找到解决办法 使用手册 ...

  5. 使用SecureCRTP 连接生产环境的web服务器和数据库服务器

    一.使用SecureCRTP 连接生产环境的web服务器 首先,需要知道以下参数信息: 1.web服务器的ip地址     2.服务器的端口号    3.会话连接的用户名和密码   4.服务器的用户名 ...

  6. webview缓存及跳转时截取url地址、监听页面变化

    缓存及一些设定 我在做一些项目时,h5做的项目手机浏览器能使用,但是在搬到webview时候不能用,这个时候通过查阅资料,原来是webview没有设定好,包括缓存.缓存大小及路径等等 mWebview ...

  7. EL表达式 与 servlvet3.0的新规范

    EL表达式 EL表达式 是一种简化的数据访问方式,是对jsp脚本的简化  . 如我们在一个页面中需要输出session的保存的一个值: <%  out.println(session.getAt ...

  8. git(一)快速入门

    1.设置用户名 git config --global user.name '你的用户名' ​ 2.设置用户名邮箱 git config --global user.email '你的邮箱' ​ 3. ...

  9. selenium多个标签页的切换(弹出新页面的切换)

    1_windows = driver.current_window_handle #定位当前页面句柄 all_handles = driver.window_handles #获取全部页面句柄 for ...

  10. ASP.NET Web API编程——路由

    路由过程大致分为三个阶段: 1)请求URI匹配已存在路由模板 2)选择控制器 3)选择操作 1匹配已存在的路由模板 路由模板 在WebApiConfig.Register方法中定义路由,例如模板默认生 ...