题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3270
题解:

期望DP,高斯消元
本来是定义的关于概率的dp,
但是发现这样定义有很多解释不通的地方(比如概率怎么会大于1,是否初始位置的概率就为1……)
然后看了大佬博客,明白了定义关于期望的dp才是正确的(至少可以解释的得通上面的问题,233)

把两个人所在的位置看成一个2元组(i,j),这个2元组状态表示一个人在i号点,另一个人在j号点。
然后令dp[i,j]表示到达状态(i,j)的期望次数。
然后考虑转移:
对于一个点i,定义pi表示呆在原地的概率,cnti表示i点的出度,ti=(1-pi)/cnti表示前往一个与i点相连的点的概率。
那么$$dp[i,j]=pi*pj*dp[i,j]+\sum_{x->i,y->j}tx*pj*dp[x,j]+pi*ty*dp[i,y]+tx,ty*dp[x,y]$$
特别的:
1.形如dp[i,i]的状态不作为转移来源,因为到了(i,i)状态就结束了。
2.dp[X,Y]((X,Y)为起始状态)的来源还要多加上一个数值1,因为一开始就期望直接到了这个状态1次。
然后发现这个dp转移存在环,所以高斯消元,解出所有的dp值。

那么现在来了一个问题,题目要求的是概率,但是我们现在求出的却是期望???
显然此时在每个结束状态碰面的概率就等于每个状态的期望到达次数/期望和。
同时因为每当到达一个结束状态就会停下来,
所以所有的结束状态的dp值之和,也就是期望之和等于1(期望到达所以结束状态的次数为1)
那么每个结束状态的期望值在数值上就等于概率值啦。

代码:

#include<bits/stdc++.h>
#define MAXN 25
using namespace std;
double a[MAXN*MAXN][MAXN*MAXN],ans[MAXN*MAXN],p[MAXN];
double *A[MAXN*MAXN];
bool Edge[MAXN][MAXN];
int N,M,Ant,X,Y;
int idx(int i,int j){return (i-1)*N+j;}
void Gausselimination(int pos,int i){
if(pos==Ant+1||i==N*N+1) return;
for(int j=pos;j<=Ant;j++) if(A[j][i]!=0){
swap(A[pos],A[j]); break;
}
if(A[pos][i]!=0){
for(int j=pos+1;j<=Ant;j++){
double k=A[j][i]/A[pos][i];
for(int l=i;l<=N*N+1;l++)
A[j][l]-=A[pos][l]*k;
}
}
Gausselimination(pos+(A[pos][i]!=0),i+1);
if(A[pos][i]!=0){
for(int l=i+1;l<=N*N;l++) ans[i]+=ans[l]*A[pos][l];
ans[i]=A[pos][N*N+1]-ans[i];
ans[i]/=A[pos][i];
}
}
void buildequation(){
double pi,pj,tx,ty;
static int cnt[MAXN];
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++)
if(Edge[i][j]) cnt[i]++;
for(int i=1;i<=N;i++)
for(int j=1;j<=N;j++){
Ant++; pi=p[i]; pj=p[j];
a[Ant][idx(i,j)]=-1;
if(i==X&&j==Y) a[Ant][N*N+1]=-1;
if(i!=j) a[Ant][idx(i,j)]+=pi*pj;
for(int x=1;x<=N;x++) if(Edge[x][i]){
tx=(1-p[x])/cnt[x];
for(int y=1;y<=N;y++) if(Edge[y][j]){
ty=(1-p[y])/cnt[y];
if(i!=y) a[Ant][idx(i,y)]=pi*ty;
if(x!=j) a[Ant][idx(x,j)]=tx*pj;
if(x!=y) a[Ant][idx(x,y)]=tx*ty;
}
}
}
for(int i=1;i<=Ant;i++) A[i]=a[i];
}
int main(){
scanf("%d%d%d%d",&N,&M,&X,&Y);
for(int i=1,u,v;i<=M;i++)
scanf("%d%d",&u,&v),Edge[u][v]=Edge[v][u]=1;
for(int i=1;i<=N;i++) scanf("%lf",&p[i]);
buildequation();
Gausselimination(1,1);
for(int i=1;i<=N;i++) printf("%.6lf ",ans[idx(i,i)]);
return 0;
}

  

●BZOJ 3270 博物馆的更多相关文章

  1. BZOJ 3270: 博物馆

    Sol 期望DP+高斯消元. 根据本题题意列出期望方程\[E(i,j)=(1-p_i)(1-p_j)E(u,v)+(1-p_i)p_jE(u,j)+p_i(1-p_j)E(i,v)+p_ip_jE(i ...

  2. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

  3. bzoj 3270 博物馆(高斯消元)

    [题意] 两人起始在s,t点,一人pi概率选择留在i点或等概率移动,问两人在每个房间相遇的概率. [思路] 把两个合并为一个状态,(a,b)表示两人所处的状态,设f[i]为两人处于i状态的概率.则有转 ...

  4. BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元

    大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...

  5. BZOJ 3270 博物馆 ——概率DP 高斯消元

    用$F(i,j)$表示A在i,B在j的概率. 然后很容易列出转移方程. 然后可以高斯消元了! 被一个问题困扰了很久,为什么起始点的概率要加上1. (因为其他博客上都是直接写成-1,雾) 考虑初始状态是 ...

  6. bzoj 3270: 博物馆【dp+高斯消元】

    好像是高斯消元解互相推(?)的dp的例子 首先考虑dp,设f[i][j]为一人在i一人在j的概率,点i答案显然就是f[i][i]: 然后根据题意,得到转移是 \[ f[i][j]=f[i][j]*p_ ...

  7. BZOJ 3270: 博物馆 概率与期望+高斯消元

    和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解. #include <bits/stdc++.h> #define N 23 #define setIO(s) freope ...

  8. BZOJ 3270 && BZOJ 1778 (期望DP && 高斯消元)

    BZOJ 3270 :设置状态为Id(x,y)表示一人在x,一人在y这个状态的概率. 所以总共有n^2种状态. p[i]表示留在该点的概率,Out[i]=(1-p[i])/Degree[i]表示离开该 ...

  9. 「BZOJ 3270」博物馆「高斯消元」

    应该算高斯消元经典题了吧. 题意:一个无向连通图,有两个人分别在\(s,t\),若一个人在\(u\),每一分钟有\(p[u]\)的概率不动,否则随机前往一个相邻的结点,求在每个点相遇的概率 题解: 首 ...

随机推荐

  1. JAVA_SE基础——30.构造代码块

    黑马程序员入学blog...构造代码块作用:给所有的对象进行统一的初始化. 问题:要求每个小孩出生都会哭,这份代码有两个构造函数,如果需要每个小孩出生都要哭的话,那么就需要在不同的构造函数中都调用cr ...

  2. JAVA_SE基础——2.环境变量的配置&测试JDK

    哈喽,利用晚上的空余时间再写篇心的~~~  谢谢大家 前一篇文章 JAVA_SE基础--JDK&JRE下载及安装http://blog.csdn.net/thescript_j/article ...

  3. django models的点查询/跨表查询/双下划线查询

    django models 在日常的编程中,我们需要建立数据库模型 而往往会用到表与表之间的关系,这就比单表取数据要复杂一些 在多表之间发生关系的情形下,我们如何利用models提供的API的特性获得 ...

  4. Python内置函数(11)——complex

    英文文档: class complex([real[, imag]]) Return a complex number with the value real + imag*1j or convert ...

  5. Nginx原理和配置总结

    一:前言 Nginx是一款优秀的HTTP服务器和反向代理服务器,除却网上说的效率高之类的优点,个人的切身体会是Nginx配置确实简单而且还好理解,和redis差不多,比rabbitmq好理解太多了: ...

  6. angular2 学习笔记 ( Rxjs, Promise, Async/Await 的区别 )

    Promise 是 ES 6 Async/Await 是 ES 7 Rxjs 是一个 js 库 在使用 angular 时,你会经常看见这 3 个东西. 它们都和异步编程有关,有些情况下你会觉得用它们 ...

  7. CTF中常见密码题解密网站总结

    0x00.综合 网站中包含大多编码的解码. http://web2hack.org/xssee/ https://www.sojson.com/ http://web.chacuo.net/ 0x01 ...

  8. 翻译:JVM虚拟机规范1.7中的运行时常量池部分(二)

    本篇为JVM虚拟机规范1.7中的运行时常量池部分系列的第二篇. 4.4.4. The CONSTANT_Integer_info and CONSTANT_Float_info Structures ...

  9. Mybatis多个参数传值方法

    第一种方案 DAO层的函数方法 Public User selectUser(String name,String area); 对应的Mapper.xml <select id="s ...

  10. 高级控件之Scrollview ( 滑动屏幕 ) 与 Imageview (滑动屏幕 切换图片)

    ScrollView  的xml布局 <?xml version="1.0" encoding="utf-8"?> <RelativeLayo ...