//新手DP学习中 = =!!

前言:背包问题在dp中可以说是经典,作为一个acmer,到现在才正式学习dp,可以说是比较失败的。我个人比较认同一点,想要做一个比较成功的acmer,dp、搜索、数学必须精练,比较遗憾的是,对我我自身而言,并没有早早的认识到这个问题,不过现在知道了,还有一年,也不算晚。还有,我建议学背包的童鞋,都看背包九讲......

dp之01背包

01背包,做为背包中最基础的一类背包,必须要掌握好,当然我这里说的掌握好,并不是说,你横扫hdu或者poj等oj上01背包模板题就可以的,记得很久以前,刚开始做背包问题,一天在hdu水了七八道,就自以为背包就是个模板,唉,真心不知道当时的自己是有多肤浅..........

01背包的动态转移方程,背包九讲上有详细的讲解,这里不再复述,就想说下,一维的和二维的转移方程都需要深刻理解,不要觉得任何时候01背包都可以转化为1维的数组

dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+val[i]);

dp[j]=max(dp[j],dp[j-v[i]]+val[i]);

此外,还想说下,01背包为什么体积要从v---0?这个问题,背包九讲上是说可以每件物品只拿一次,恩,我觉得可以自己推推,这样理解会更加深刻.......

1、UVA624(记录路径问题)

总得来说,不管是01背包还是完全背包,其动态转移每次只有两种状态在转移,就说这道题目,

dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+val[i])    对于dp[i][j]来说,它只能使由两个状态中的一个转移过来的,要么取一件,要么不取,那么我们再开一个二维数组s[i][j],0表示不取,1表示取,那么不取是dp[i-1][j],取是dp[i-1][j-v[i]]+val[i];这样,数组s[i][j]就记录下了每次动态转移的方向,在递归调用,打印路径,结果就出来了,具体可以看http://www.cnblogs.com/ziyi--caolu/archive/2013/04/10/3012578.html

2、UVA562(平分钱币问题)

题目大意:给定n个硬币,要求将这些硬币平分以使两个人获得的钱尽量多,求两个人分到的钱最小差值。

这类问题的关键就在平衡,而就这到题目而言,01背包本身求的就是在体积小于等于sum的情况下的最大值,那么这些硬币本身既当体积又当价值,把总价值求出来/2,再套用模板......可以说比较水的平衡问题,具体看:http://www.cnblogs.com/ziyi--caolu/archive/2013/04/10/3012755.html

3、组成n块钱,有多少种的问题

这类题目,一般是这样描述的:给你n块钱,有m种钱币,每种钱币只能用一次,问组成n块钱有多少种方法........

对于这类题目,我更多的感受是觉得是到递推题,其实,有好多的dp都是一个递推,然后记录更新状态的过程,要组成dp[j],那么假设有一个5快的钱币,那么首先要判断dp[j-5]有没有组成,这里我比较喜欢用0表示没有这个状态,>0表示这个状态存在,那么在初始化dp数组的时候,dp[0]=1;然后套用背包模板,其动态转移方程(倒不如说递推式)为dp[j]+=dp[j-5];

上面是常规题目,下面为01背包的变种题:

4、poj2184(两个属性最大和,平移问题)

题意:给定两个属性,求这两个属性的和的最大值.........

思路:对于这种题目,我们可以尝试将一个属性当作容量,另一个属性当作价值,然后考虑dp.......这个题目属性还可以是负数,那么可以采取平移1000个单位,使其不存在负数问题。将第一个属性往后平移1000个单位,然后推导其动态转移方程,若是dp[i],代表当加入第一个属性加到i时,符合题意的第二个属性的最大值......题意是两个属性的和的最大值,那么动态转移方程必然不是dp[j]=max(dp[j],dp[j-s[i][0]]+s[i][1]),

因为这个动态转移方程固然可以求出第二个属性的最大值,但别忘了题意要求第一个属性与第二个属性的和的最大值,那么,第一个属性平移了1000个单位,在考虑动态转移时,是必须要将这个考虑进去的。可以开一个a数组记录路径,然后根据题意,
动态转移方程应该为dp[j]=max(dp[j]-a[j]*1000,dp[j-s[i][0]]+s[i][1]-(a[j-s[i][0]]+1)*1000),一开始a数组全部赋值为0,所以需要a[j-s[i][0]]+1.....因为它新加入了一个值。考虑这个方程,dp数组的初始全部赋值为负无穷大,dp[0]=0。

注意一点,在历遍查找最大值的时候,dp[i]>0,i-a[i]*1000>0

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define maxx 1000005
int s[maxx][2],dp[maxx],a[maxx];
int main()
{
int n;
while(scanf("%d",&n)>0)
{
int sum=0;
for(int i=1;i<=n;i++)
{
scanf("%d %d",&s[i][0],&s[i][1]);
if(s[i][0]<0&&s[i][1]<0)
{
i--;
n--;
continue;
}
s[i][0]+=1000;
sum+=s[i][0];
}
memset(a,0,sizeof(a));
for(int i=0;i<=sum;i++)
dp[i]=-maxx;
dp[0]=0;
for(int i=1;i<=n;i++)
{
for(int j=sum;j>=s[i][0];j--)
if(dp[j]-a[j]*1000<dp[j-s[i][0]]+s[i][1]-(a[j-s[i][0]]+1)*1000)
{
dp[j]=dp[j-s[i][0]]+s[i][1];
a[j]=a[j-s[i][0]]+1;
}
}
int maxn=0;
for(int i=1;i<=sum;i++)
if(maxn<dp[i]-a[i]*1000+i&&dp[i]>=0&&i-a[i]*1000>=0)
maxn=dp[i]-a[i]*1000+i;
printf("%d\n",maxn);
}
return 0;
}

5、hdu2639(第k优解问题)

题意:给出一行价值,一行体积,让你在v体积的范围内找出第k大的值.......(注意,不要 和它的第一题混起来,它第一行是价值,再是体积)

思路:首先dp[i][j]代表的是在体积为i的时候第j优解为dp[i][j]......那么,我们就可以这样思考,i对应体积,那么如果只是一维的dp[i],代表的应该是体积为i时的最大值,那么同理,dp[i][1]代表的是体积为i时的最大值,那么我们就可以退出两种动态,dp[i][m],dp[i-s[i][0]][m]+s[i][1].....然后把这两种状态开个两个数组分别保存起来,再合并出体积为i时的前k优解......依次后推,直到dp[v][k].......

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
#define max(x,y) x>y? x:y
typedef int ss;
ss dp[1005][100],s[1005][2];
ss a[50],b[50]; int main()
{
int text;
scanf("%d",&text);
while(text--)
{
ss n,v,k;
scanf("%d%d%d",&n,&v,&k);
for(ss i=1;i<=n;i++)
scanf("%d",&s[i][1]);
for(ss i=1;i<=n;i++)
scanf("%d",&s[i][0]);
memset(dp,0,sizeof(dp));
if(k==0)
{
printf("0\n");
continue;
}
for(int i=1;i<=n;i++)
{
for(int j=v;j>=s[i][0];j--)
{
for(int m=1;m<=k;m++)
{
a[m]=dp[j][m];
b[m]=dp[j-s[i][0]][m]+s[i][1];
}
int x=1,y=1,w=1;
a[k+1]=b[k+1]=-1; //这个地方要注意,因为有可能a或者b数组先比较完 while(w<=k&&(x<=k||y<=k))
{
if(a[x]>b[y])
{
dp[j][w]=a[x++];
}
else
{
dp[j][w]=b[y++];
}
if(w==1||dp[j][w]!=dp[j][w-1]) //这是去重.....
w++;
//printf("111\n");
}
} }
//for(int i=1;i<=k;i++)
printf("%d\n",dp[v][k]);
}
return 0;
}

6、hdu3644(带限制的01背包)

题意:买东西,每个东西有三个特征值,p代表价格,q代表你手中钱必须不低于q才能买这个物品,v代表得到的价值。

mark:又是变种01背包,每做一个变种的,就是一种提高。。

按照q - p以由大到小的顺序排序,然后进行01背包的DP即可。

#include<stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
const int MAXN=5005;
int dp[MAXN];
struct Node
{
int p,q,v;
}node[505];
bool cmp(Node a,Node b)
{
return (a.q-a.p)<(b.q-b.p);
}
int main()
{
int n,m;
int i,j;
int p,q,v;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=0;i<=m;i++)
dp[i]=0;
for(i=0;i<n;i++)
{
scanf("%d%d%d",&node[i].p,&node[i].q,&node[i].v);
}
sort(node,node+n,cmp);
for(i=0;i<n;i++)
{
for(j=m;j>=node[i].p;j--)
{
if(j>=node[i].q)
dp[j]=max(dp[j],dp[j-node[i].p]+node[i].v);
}
}
int ans=0;
for(i=1;i<=m;i++)
if(ans<dp[i]) ans=dp[i];
printf("%d\n",ans); }
return 0;
}

dp之完全背包

完全背包较之01背包,唯一区别就是01背包的物品每个只能取一次,而完全背包可以取无限次

dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]]+val[i])

dp[j]=max(dp[j],dp[j-v[i]]+val[i]);

1、poj3181(高精度背包)

这道题目要用到大数加法,其他的没有什么难度,当然,你的大数加法如果写的比较挫,是会超时的......解题报告:http://www.cnblogs.com/ziyi--caolu/p/3211091.html

2、poj1787(多重背包转化为完全背包,以及路径记录   推荐)

题意:有四种硬币,1分,5分,10分,25分,分别有a,b,c,d种,给出一个n分钱,要求你求出组成n分钱最多需要的硬币数量,并且输出组成它的各种硬币的数量......

学到的东西:这个题目我是用两种方法做的,一个是完全背包,一个是多重背包。做完这个题目,我对背包的理解可以说上了个层次......还有记录路径的方法,反过来求出各个硬币的数量,都是我以前做的题目没有涉及到的.......

要求出各个硬币有多少种,只需要记录路径,在开一个数组统计p-path[p],为什么可以如此?很容易想到path[p]=p-v[i]

如此,p-path[p]==p-(p-v[i])==v[i],而v[i]正好是硬币的价值........这道题目令我思考到一个东西,一般的背包问题的初始值都是将dp全部赋值为0的,而在这边dp[0]==1,并且在动态转移的过程中,还限制了dp[j]>0才可以转移,与背包的模板的动态转移不同啊?为什么要这样呢?

在一般的dp题目里面,有体积,价值,所要求的不是最大价值就是最小价值,而定义的dp[i][j]意义是装有i件物品,体积为j的最大值为dp[i][j],简化为一维的dp[j]代表的是在体积为j的时候最大价值为dp[j]。仔细观察,可以发现,在dp[j-v[i]]时,dp[j]本身就可以从dp[j-v[i]]那边得到值,因为dp[j-v[i]]这个地方,它可以组成dp[j]......也就是说,它不需要去判断在dp[j-v[i]]前面是否有数可以组成dp[j-v[i]],因此dp[j-v[i]]为不为0,不影响最终结果......

而这个题目却不同,需要赋值dp[0]=1;在动态转移的时候还得保证dp[j-v[i]]>0,这是因为题意是要求组成n分钱需要的最多硬币数量,那么你要可以组成dp[n],dp[n-v[i]]必须要可以组成,否则就会出错.......同理,这道题目原理如此,在做给出n分钱,每种钱币有a,b,c,.....种,求组成n分钱最多的种数,也是要赋值dp[0]=1的,原理是一样的........

这告诫我,在做dp题目时,要仔细思考好其前后的关系,以及中间推导至最后的关系.....

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[10010],ans[10010],num[10010],path[10010];
int p,c[5]={0,1,5,10,25},t[5];
int main()
{
while(scanf("%d %d %d %d %d",&p,&t[1],&t[2],&t[3],&t[4])>0&&(p+t[1]+t[2]+t[3]+t[4]))
{
memset(dp,0,sizeof(dp));
memset(ans,0,sizeof(ans));
memset(path,0,sizeof(path));
dp[0]=1;
for(int i=1;i<=4;i++)
{
memset(num,0,sizeof(num));
for(int j=c[i];j<=p;j++)
if(dp[j-c[i]]&&dp[j-c[i]]+1>dp[j]&&num[j-c[i]]<t[i]) //一般来说,完全背包的硬币是没有限制的,后一个数必然可以由前面的某个数组成,所以也就不需要dp[j-c[i]]>0,<br>但是,这次用到的完全背包其硬币数受到了限制,也就导致有些数根本不可能组成,所以要把这些数排除
{
dp[j]=dp[j-c[i]]+1;
num[j]=num[j-c[i]]+1;
path[j]=j-c[i];
}
}
int i=p;
if(dp[p]>0)
{
while(i!=0)
{
ans[i-path[i]]++;
i=path[i];
}
printf("Throw in %d cents, %d nickels, %d dimes, and %d quarters.\n",ans[1],ans[5],ans[10],ans[25]);
}
else printf("Charlie cannot buy coffee.\n");
}
return 0;
}
//二进制转化为01背包:
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
struct node
{
int num;
int cout;
int dw;
}w[20001];
int dp[20001],c[5]={0,1,5,10,25},t[5],path[20001][2],ans[20001];
int p;
int main()
{
while(scanf("%d%d%d%d%d",&p,&t[1],&t[2],&t[3],&t[4])>0&&(p+t[1]+t[2]+t[3]+t[4]))
{
int cnt=0;
for(int i=1;i<=4;i++)
{
int k=1;
while(t[i]-k>0)
{
w[cnt].num=k*c[i];
w[cnt].cout=k;
w[cnt++].dw=c[i];
t[i]-=k;
//if(i==1)
//printf("%d\n",w[cnt-1].dw);
k*=2;
} w[cnt].num=t[i]*c[i];
w[cnt].cout=t[i];
w[cnt++].dw=c[i];
//if(i==1)
// printf("%d\n",w[cnt-1].dw);
}
memset(dp,0,sizeof(dp));
memset(path,0,sizeof(path));
memset(ans,0,sizeof(ans));
dp[0]=1;
for(int i=0;i<cnt;i++)
{
for(int j=p;j>=w[i].num;j--)
if(dp[j-w[i].num]>0&&dp[j]<dp[j-w[i].num]+w[i].cout) //多重背包的二进制拆分其原理就是转化成01背包来处理,而01背包是从n推导至0,在i==1时,dp[n-w[i].num]+w[i].cout>dp[n]除非w[i].cout==0,否则就是必然的,但是同时,你要可以组成dp[n],那么你首先要可以组成dp[n-w[i].num],那么也就是说dp[n-w[i].num]必须要>0,才可以进行动态转移
{
dp[j]=dp[j-w[i].num]+w[i].cout;
//printf("%d %d %d %d\n",w[i].num,w[i].dw,w[i].cout,dp[j]);
path[j][0]=j-w[i].num;
path[j][1]=i;
}
}
//printf("%d\n",dp[p]);
if(dp[p]!=0)
{
while(p!=0)
{
int tmp=p-path[p][0];
int j=path[p][1];
ans[w[j].dw]+=w[j].cout;
p=path[p][0];
}
printf("Throw in %d cents, %d nickels, %d dimes, and %d quarters.\n",ans[1],ans[5],ans[10],ans[25]);
}
else printf("Charlie cannot buy coffee.\n");
}
return 0;
}

 3、poj2063题意:求投资k年获得最大投资,每年都选最大利息的方案进行投资k年后就可以得到最多的人民币。
注意:每一年收到的利息都可以作为下一年的本金......其实从测试数据来看,是很好看出来的......
思路:将每一年的“体积”加上利息就好,当然,数据太大,可以除以100减少时间和空间复杂度......
解题报告:http://www.cnblogs.com/ziyi--caolu/p/3214100.html
 
dp之多重背包
 
1、hdu1114(水题)

2、hdu1059
题意:价值为1,2,3,4,5,6. 分别有n[1],n[2],n[3],n[4],n[5],n[6]个。求能否找到满足价值刚

好是所有的一半的方案。  思路:简单的多重背包,我建议多重背包都用二进制拆分优化下........ 解

题报告:http://www.cnblogs.com/ziyi--caolu/p/3216818.html
 

3、poj1217
题意:有现今cash,和n种钱币,每种钱币有ni个,价值为di,求各种钱币组成的不超过cash的最大钱数

.......

思路:二进制拆分转化为01背包,或者转化为完全背包都是可以的。

解题报告:http://www.cnblogs.com/ziyi--caolu/p/3216827.html


4、poj2392(推荐)

题意:有k种石头,高为hi,在不超过ai的高度下,这种石头可以放置,有ci种这个石头,求这些石头所能放置的最高高度.........

思路:以往的什么硬币种数,最大硬币数之类的,他们的硬币都已经是排好序了的,总是从小到大,但是这个题目不同,它有着最高高度的限制,那么在思考的时候,要得到最优的,那么首先就是要对ai排序......这是贪心,然后就是多重背包了........

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
struct node
{
int h;
int a;
int c;
}s[500];
int dp[50000],num[41000];
int cmp(const node p,const node q)
{
return p.a<q.a;
}
int main()
{
int n;
while(scanf("%d",&n)>0)
{
int maxx=0;
for(int i=1;i<=n;i++)
{
scanf("%d %d %d",&s[i].h,&s[i].a,&s[i].c);
if(maxx<s[i].a)
maxx=s[i].a;
}
sort(s+1,s+1+n,cmp);
memset(dp,0,sizeof(dp));
dp[0]=1;
for(int i=1;i<=n;i++)
{
memset(num,0,sizeof(num));
for(int j=s[i].h;j<=maxx;j++)
if(dp[j-s[i].h]&&dp[j-s[i].h]+s[i].h>dp[j]&&dp[j-s[i].h]+s[i].h-1<=s[i].a&&num[j-s[i].h]<s[i].c)
{
dp[j]=dp[j-s[i].h]+s[i].h;
//printf("%d %d\n",dp[j],s[i].h);
num[j]=num[j-s[i].h]+1;
//if(dp[j]==37)
//printf("%d\n",num[j]);
}
}
int maxn=0;
for(int i=0;i<=maxx;i++)
if(maxn<dp[i])
maxn=dp[i];
printf("%d\n",maxn-1);
}
return 0;
}

多维背包

1、hdu4501

思路:将v1,v2,k都当作一种体积,每种物品只能取一次,求max.......

反思:以前写背包,由于只有一个体积,所以习惯性的在for中,就所取的最小值限制,而在这次,因为这里导致wa了,具体是因为在多个体积限制的背包里,当这个体积小于它的最小体积时,它可以不去减它的最小体积,而是作为一种状态来传递其他体积的限制的值.......

解题报告:http://www.cnblogs.com/ziyi--caolu/p/3217151.html

2、hdu2159

解题报告:http://www.cnblogs.com/ziyi--caolu/p/3222683.html

3、hdu3496

题意:给你n张电影门票,但一次只可以买m张,并且你最多可以看L分钟,接下来是n场电影,每一场电影a分钟,b价值,要求恰好看m场电影所得到的最大价值,要是看不到m场电影,输出0;

思路:这个题目可以很明显的看出来,有两个限制条件,必须看m场电影的最大价值........其实我前面在01背包时提过,对于这样的条件,要可以看第n场电影,那么相对应的第n-1场电影必须看了,否则不能进行动态转移.......我的想法是,0代表着这场电影没有看,>0代表这场电影看了。其他的就是动态转移了,很容易得到,dp[i][j]=max(dp[i][j],dp[i-1][j-v[i]]+val[i])........当然,在最开始的dp[0][0]=1,那么得到的最大值会在第m场电影里面,最大值需要减去初始值........也就是1

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[105][1005],s[105][2];
int max(int x,int y)
{
if(x>y)
return x;
else
return y;
}
int main()
{
int text;
scanf("%d",&text);
while(text--)
{
int N,M,L;
scanf("%d %d %d",&N,&M,&L);
for(int i=1;i<=N;i++)
scanf("%d %d",&s[i][0],&s[i][1]);
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=N;i++)
{
for(int j=M;j>=0;j--)
{
for(int k=L;k>=0;k--)
{
if(k>=s[i][0]&&j>0&&dp[j-1][k-s[i][0]]&&dp[j][k]<dp[j-1][k-s[i][0]]+s[i][1])
{
dp[j][k]=dp[j-1][k-s[i][0]]+s[i][1];
}
}
}
}
int i,maxn=0;
for(i=0;i<=L;i++)
if(dp[M][i]>maxn)
maxn=dp[M][i];
if(maxn==0)
printf("0\n");
else
printf("%d\n",maxn-1);
}
return 0;
}

 4、poj2576(推荐)

题意:有一群sb要拔河,把这群sb分为两拨,两拨sb数只差不能大于1,输出这两拨人的体重,小的在前面......

思路:把总人数除2,总重量除2,之后你会发现就是个简单的二维背包,有两个限制.....一个是人数,一个是体重,再仔细思考下,发现一定要有这么多人,也就是说一定要有总人数除以2这么多人,那么当第n个人存在,第n-1个人必须存在.........

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[55][23000],a[105];
int main()
{
int n;
while(scanf("%d",&n)>0)
{
int m=(n+1)/2,sum=0,maxx=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
if(n==1)
{
printf("0 %d\n",a[1]);
continue;
}
memset(dp,0,sizeof(dp));
dp[0][0]=1;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
for(int k=sum/2;k>=0;k--)
{
if(j>0&&k-a[i]>=0&&dp[j-1][k-a[i]]&&dp[j][k]<dp[j-1][k-a[i]]+a[i])
dp[j][k]=dp[j-1][k-a[i]]+a[i];
//printf("%d\n",dp[j][k]-1);
if(maxx<dp[j][k])
maxx=dp[j][k];
}
}
}
maxx--;
//printf("%d\n",maxx);
int tmp=sum-maxx;
if(tmp<maxx)
{
int h=tmp;
tmp=maxx;
maxx=h;
}
printf("%d %d\n",maxx,tmp);
}
return 0;
}

 5、poj1837(天平问题  推荐)

题意:给你c(2<=c<=20)个挂钩,g(2<=g<=20)个砝码,求在将所有砝码(砝码重1~~25)挂到天平(天平长  -15~~15)上,并使得天平平衡的方法数.......

思路:(这是我木有想到的)将g个挂钩挂上的极限值:15*25*20==7500

那么在有负数的情况下是-7500~~7500   以0为平衡点......

那可以将平衡点往右移7500个单位,范围就是0~~15000......这样就好处理多了

其实我觉得以后的题目中不仅仅天平问题可以这样处理,在有负数的以及要装入数组处理的题目中,我们都可以尝试着平移简化问题......

这题目是要将所有的砝码都挂到天平上后的最多方法数,同时砝码自带质量,也就是说,这不仅仅有着“容量”的限制,还有着“件数”的限制,很明显的二维费用背包......

每个砝码只能用一次,果断01背包,并且在处理这一状态前,先判断前一状态是否存在......我喜欢用>0表示存在,用0表示不存在,而这个题目又是求方法数,不需要再减去1........

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[25][16000],s[25],t[25];
int main()
{
int n,m;
while(scanf("%d %d",&n,&m)>0)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&s[i]);
}
for(int i=1;i<=m;i++)
scanf("%d",&t[i]);
memset(dp,0,sizeof(dp));
dp[0][7500]=1;
int sum=0;
for(int i=1;i<=m;i++) //m个砝码
{
for(int j=15000;j>=1;j--) //01背包,每个砝码只能用一次
for(int k=1;k<=n;k++)
if(j+s[k]*t[i]>=0&&j+s[k]*t[i]<=15000&&dp[i-1][j+s[k]*t[i]]) //判断前一状态是否存在........
{
dp[i][j]+=dp[i-1][j+s[k]*t[i]];
//printf("j==%d dp==%d %d\n",j,dp[i][j],j+s[k]*t[i]);
}
//sum++;
}
printf("%d\n",dp[m][7500]);
}
return 0;
}

 分组背包

1、hdu1712

题意:有n门课程,和m天时间,完成a[i][j]得到的价值为第i行j列的数字,求最大价值......

思路:分组背包,就是第n门课程,可以做一天,可以做两天,但它们相斥,你做了一天,就不能再做一天...也就是不能再做这门课程了......

当然这是最多取一个的算法.......

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[150],a[150][150];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)>0&&(n+m))
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++) 分成n组
{
for(int j=m;j>=1;j--) 体积
{
for(int k=1;k<=m;k++) 第i组内的各个数据
if(j-k>=0&&dp[j]<dp[j-k]+a[i][k])
dp[j]=dp[j-k]+a[i][k];
}
}
printf("%d\n",dp[m]);
}
return 0;
}

2、hdu3033(最少取一次   推荐)

题意:有n双鞋子,m块钱,k个品牌,(一个品牌可以有多种价值不同的鞋子),接下来n种不同的鞋子,a为所属品牌,b为要花费的钱,c为所能得到的价值。每种价值的鞋子只会买一双,有个人有个伟大的梦想,每个品牌的鞋子至少买一双,问他这个梦想可以实现不?不可以实现输出Impossible,可以实现输出最大价值......

思路:很容易看出来这是个分组背包题,当然这个分组背包有些不同于每组最多取一个的分组背包......但我是觉得,分组背包就这么几种问法吧

1、最常见的、最水的,每组最多取1个.........(一般是隐性的,需要自己分析)

2、每组至少取1个........(就是本题)

3、随意选,可以选,可以不选,可以只选1个,也可以选多个......(暂时还未学,马上会学).....

对于第一种,模板题,只要你可以分析出来,那么可以水过.....

对于第二种,我想说也是模板题,当然是以本题为基础的模板.........

好吧,这道题目,首先,每组至少取一个,就是说必须要取一个,那么数组dp[i][j],代表的含义就是 前i组容量为j的情况下所得到的最大价值为dpi][j];

同样的,我们首先思考它的状态,每组必须要取一个,那么第i组存在的情况下,第i-1组也必须存在,也是回到了前面所做背包所说的那种“一定”、“必须”的状态,那么同样的在动态转移的时候,要判断它的前一个状态合不合法,我个人比较喜欢用0来判断不合法,>0判断合法.......初始化dp[0][0]=1,最后得到的结果减去1......我想说的是,最后的结果不一定会集中在dp[k][m]上,因为这个状态它不一定存在,也就是说,这个状态不一定合法,当然,也没有关系,我们考虑第k组一定要存在,那么扫描下dp[k][i],取最大值就好.....

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
int dp[15][10005],s[105][2],num[15][105];
queue<int>Q[105];
int main()
{
int n,m,k;
while(scanf("%d %d %d",&n,&m,&k)>0)
{ for(int i=0;i<105;i++)
while(!Q[i].empty())
Q[i].pop();
for(int i=1;i<=n;i++)
{
int a,b,c;
scanf("%d %d %d",&a,&b,&c);
Q[a].push(i);
s[i][0]=b;
s[i][1]=c;
} for(int i=1;i<=k;i++)
{
int j=1;
while(!Q[i].empty())
{
num[i][j++]=Q[i].front();
//printf("i==%d %d\n",i,Q[i].front());
Q[i].pop();
}
num[i][0]=j;
} //前面都是将数据处理好
memset(dp,0,sizeof(dp)); //初始化dp
dp[0][0]=1;
int flag=1;
for(int i=1;i<=k;i++) //这是分组
{
if(num[i][0]==1) //要是有一组没有数据,那么说明,它不可能满足每组必须取一个这条件.......
{
flag=0;
break;
}
for(int f=1;f<num[i][0];f++) //不同于最多取一个的分组背包,这里是先放每组有的物品,后放容积.......
{
int xx=num[i][f];;
for(int j=m;j>=0;j--) //至于为什么这么放?我是认为,它是一种模板.......
{
if(j-s[xx][0]>=0&&dp[i][j-s[xx][0]]&&dp[i][j-s[xx][0]]+s[xx][1]>dp[i][j]) //这个判断必须放到第一,以免重复
dp[i][j]=dp[i][j-s[xx][0]]+s[xx][1]; if(j-s[xx][0]>=0&&dp[i-1][j-s[xx][0]]&&dp[i-1][j-s[xx][0]]+s[xx][1]>dp[i][j])//这个必须放在上一个判断下面.....
dp[i][j]=dp[i-1][j-s[xx][0]]+s[xx][1]; }
}
}
int maxx=0;
for(int i=0;i<=m;i++)
if(maxx<dp[k][i])
maxx=dp[k][i];
if(maxx==0||flag==0)
printf("Impossible\n");
else
printf("%d\n",maxx-1);//最大值记得减去1
}
return 0;
}

 3、hdu3535(必做,三种状态都有:最少取一次,最多取一次,随意取  推荐)

题意:有0,1,2三种任务,0任务中的任务至少得完成一件,1中的任务最多完成1件,2中的任务随便做。每一个任务最多只能做一次 。n代表有n组任务,t代表有t分钟,m代表这组任务有m个子任务,s代表这m个子任务属于0,1,2中的哪种类型,接下来是m个子任务,第一个数代表要花费的时间,第二个数代表得到的愉悦度......求在可以完成工作的情况的最大愉悦度....要是不能完成,输出-1(题意要求每个子任务只能被取一次)

错误思路:我一开始想,把0,1,2这三大组任务的子任务先统计好,在dp的时候,我开dp[3][105],代表在完成3组任务体积为105的情况的最大愉悦度.......这种思路是错的,因为题目给出的n组任务是有其固定顺序,只能是按照它给出来的解决问题.......

ac思路:分为n组,每一组判断这一组是属于0,1,2三种任务中的哪一组......

若是属于0,那么将这一组的dp[i][j],j从0~~t全部置为负无穷大,然后开始动态转移.....为什么要置为负无穷大?因为只有这样才能不出现一个都不选择的情况.....其动态转移方程,,在我前一个分组背包题目已经详细推导过,就是dp[i][j]=max(dp[i][j-v[i]]+val[i],dp[i-1][j-v[i]]+val[i],dp[i][j])

若是属于1,先将第i-1的状态传递到第i状态,在开始分组背包的模板......最多取一个dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[i]]+val[i]);

若是属于2,先将第i-1的状态传递到第i状态,随意取,那么可以不取,取任意个子任务......dp[i][j]=max(dp[i-1][j],dp[i][j-v[i]]+val[i],dp[i-1][j-v[i]]+val[i]);

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
#define M -1000000000
int dp[105][105],s[105][2];
int main()
{
int n,t;
while(scanf("%d %d",&n,&t)>0)
{
int m,k;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
scanf("%d %d",&m,&k);
for(int j=1;j<=m;j++)
scanf("%d %d",&s[j][0],&s[j][1]);
if(k!=0)
for(int j=0;j<=t;j++) // 传递状态
dp[i][j]=dp[i-1][j];
if(k==0) //至少取一个 ,分组背包变形模板.......
{
for(int tmp=0;tmp<=t;tmp++)
dp[i][tmp]=M;
for(int tmp=1;tmp<=m;tmp++) //这层for循环必须在前面......
{
for(int j=t;j>=0;j--)
{
if(j-s[tmp][0]>=0&&dp[i][j-s[tmp][0]]+s[tmp][1]>dp[i][j])
dp[i][j]=dp[i][j-s[tmp][0]]+s[tmp][1]; if(j-s[tmp][0]>=0&&dp[i-1][j-s[tmp][0]]+s[tmp][1]>dp[i][j])
dp[i][j]=dp[i-1][j-s[tmp][0]]+s[tmp][1];
}
}
}
else if(k==1) //最多取一个 ,分组背包模板
{
for(int j=t;j>=0;j--)
{
for(int tmp=1;tmp<=m;tmp++)
{
if(j-s[tmp][0]>=0)
{
if(dp[i-1][j-s[tmp][0]]+s[tmp][1]>dp[i][j])
dp[i][j]=dp[i-1][j-s[tmp][0]]+s[tmp][1];
}
}
}
}
else if(k==2) //随意取 ,01背包,每个子任务只能取一次,却可以取任意个不同的子任务
{
for(int tmp=1;tmp<=m;tmp++)
{
for(int j=t;j>=s[tmp][0];j--)
{
if(dp[i][j-s[tmp][0]]+s[tmp][1]>dp[i][j])
dp[i][j]=dp[i][j-s[tmp][0]]+s[tmp][1]; if(dp[i-1][j-s[tmp][0]]+s[tmp][1]>dp[i][j])
dp[i][j]=dp[i-1][j-s[tmp][0]]+s[tmp][1]; }
}
}
}
if(dp[n][t]<0)
printf("-1\n");
else
printf("%d\n",dp[n][t]);
}
return 0;
}

混合背包

总得来说,混合背包很容易理解,就是有的物品只能取一次,有的物品能取无限次,有的物品取得次数有限制,这样的话分别对对应情况采用01、完全、多重背包即可。但是题目往往没有那么简单、赤裸裸的,让你一看就知道是混合背包的,比如说下面这道题:

poj1742

题意:给你价值为a1,a2.....的货币,每种有c1,c2.......个,求这些货币所能组成的价值小于等于m有多少个.....

思路:很像一道多重背包题?那我一开始的确是用多重背包的思路编写的......TLE了,原来其中隐藏着一个被我忽视的一个问题,当ai*ci>=m时,我们没有必要去拆分ci了,就直接把这种情况当作完全背包处理.......

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
int dp[100005],t[300][2];
int n,m;
int sum;
void deal1(int x)
{
for(int j=m;j>=x;j--)
if(dp[j-x]&&dp[j-x]+x>dp[j]&&dp[j-x]+x-1<=m)
{
if(!dp[j]) sum++;
dp[j]=dp[j-x]+x;
}
}
int main()
{ while(scanf("%d%d",&n,&m)>0&&(n+m))
{
for(int i=1;i<=n;i++)
{
scanf("%d",&t[i][0]);
}
memset(dp,0,sizeof(dp));
dp[0]=1;
sum=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&t[i][1]);
if(t[i][1]*t[i][0]<m)
{
int k=1;
while(t[i][1]-k>0)
{
deal1(k*t[i][0]);
t[i][1]-=k;
k*=2;
}
deal1(t[i][1]*t[i][0]);
}
else
{
for(int j=t[i][0];j<=m;j++)
if(dp[j-t[i][0]]&&dp[j]<dp[j-t[i][0]]+t[i][0])
{
if(!dp[j]) sum++;
dp[j]=dp[j-t[i][0]]+t[i][0];
}
}
}
printf("%d\n",sum);
}
return 0;
}

此次的背包总结到此结束了,我是做完区间dp才来写这个总结的,dp说起来是很神奇,但是要是你可以推导出状态,根据状态设置好初始化,那么就不算是难......

朋友们,虽然这个世界日益浮躁起来,只要能够为了当时纯粹的梦想和感动坚持努力下去,不管其它人怎么样,我们也能够保持自己的本色走下去。
 

dp之背包总结篇的更多相关文章

  1. USACO Money Systems Dp 01背包

    一道经典的Dp..01背包 定义dp[i] 为需要构造的数字为i 的所有方法数 一开始的时候是这么想的 for(i = 1; i <= N; ++i){ for(j = 1; j <= V ...

  2. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

  3. HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化)

    HDOJ(HDU).2844 Coins (DP 多重背包+二进制优化) 题意分析 先把每种硬币按照二进制拆分好,然后做01背包即可.需要注意的是本题只需要求解可以凑出几种金钱的价格,而不需要输出种数 ...

  4. HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化)

    HDOJ(HDU).1059 Dividing(DP 多重背包+二进制优化) 题意分析 给出一系列的石头的数量,然后问石头能否被平分成为价值相等的2份.首先可以确定的是如果石头的价值总和为奇数的话,那 ...

  5. HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化)

    HDOJ(HDU).2191. 悼念512汶川大地震遇难同胞――珍惜现在,感恩生活 (DP 多重背包+二进制优化) 题意分析 首先C表示测试数据的组数,然后给出经费的金额和大米的种类.接着是每袋大米的 ...

  6. HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包)

    HDOJ(HDU).4508 湫湫系列故事――减肥记I (DP 完全背包) 题意分析 裸完全背包 代码总览 #include <iostream> #include <cstdio& ...

  7. HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包)

    HDOJ(HDU).1284 钱币兑换问题 (DP 完全背包) 题意分析 裸的完全背包问题 代码总览 #include <iostream> #include <cstdio> ...

  8. HDOJ(HDU).1114 Piggy-Bank (DP 完全背包)

    HDOJ(HDU).1114 Piggy-Bank (DP 完全背包) 题意分析 裸的完全背包 代码总览 #include <iostream> #include <cstdio&g ...

  9. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

随机推荐

  1. Ubuntu登陆密码忘记

    在VMware中安装了Ubuntu 10.04,经过了一段时间,再次登录的时候居然进不去了, 一开始不知道怎样在虚拟机中进入到Grub启动界面,网上搜索了一番,按照以下步骤重新为用户设定了新密码. 重 ...

  2. Hibernate之深入持久化对象

    Hibernate是一个彻底的O/R Mapping 框架.之所以说彻底,是因为相对于其他的 框架 ,如Spring JDBC,iBatis 需要手动的管理SQL语句,Hibernate采用了完全 面 ...

  3. wpf研究之道——datagrid控件数据绑定

    前台: <DataGrid x:Name="TestCaseDataGrid" ItemsSource="{Binding}" > {binding ...

  4. 逆向集录_00_不同程序OEP特征总结

    在分析/逆向 程序时,如果事先知道这类程序的一些特征,那将会是事半功倍的: 分析/逆向 程序,和写程序不同,比喻的话:写程序像在作案,分析/逆向 程序就像是在破案,对破案来讲,重在假想和推理: 特征1 ...

  5. PHP处理上传文件

    HTML中使用type = 'file'类型的表单可以向服务器上传文件: 上传文件的表单必须在form中定义enctyp = 'multipart/form-data': HTML代码如下: < ...

  6. Hazelcast分布式

    一般的应用正式环境中都不止一台服务器(也就是说是集群的),那么如果只是简单的将数据预加载到内存,那么就会有数据不同步的现象. (更新了其中一台JVM,另一台JVM并不会收到通知从而保持数据同步). 这 ...

  7. 新概念英语(1-131)Don't be so sure

    Lesson 131 Don't be so sure! 别那么肯定! Listen to the tape then answer this question. What's the problem ...

  8. Linux后台运行命令 nohup command > myout.file 2>&1

    Linux命令后台运行 转自北国的雨,谢谢:http://www.cnblogs.com/lwm-1988/archive/2011/08/20/2147299.html 有两种方式:1. comma ...

  9. C#微信公众号——自定义菜单

    自定义菜单最多包括3个一级菜单,每个一级菜单最多包含5个二级菜单.一级菜单最多4个汉字,二级菜单最多7个汉字,多出来的部分将会以“...”代替.自定义菜单的介绍,可以看官方开发文档http://mp. ...

  10. 我的jquery validate 笔记

    <!DOCTYPE html><html lang="en">    <head>    <meta charset="UTF- ...