Description

红黑树是一类特殊的二叉搜索树,其中每个结点被染成红色或黑色。若将二叉搜索树结点中的空指针看作是指向一个空结点,则称这类空结点为二叉搜索树的前端结点。并规定所有前端结点的高度为-1。

  

一棵红黑树是满足下面“红黑性质”的染色二叉搜索树:

  (1) 每个结点被染成红色或黑色;

  (2) 每个前端结点为黑色结点;

  (3) 任一红结点的子结点均为黑结点;

  (4) 在从任一结点到其子孙前端结点的所有路径上具有相同的黑结点数。

从红黑树中任一结点 \(x\) 出发(不包括结点 \(x\)),到达一个前端结点的任意一条路径上的黑结点个数称为结点 \(x\) 的黑高度,记作 \(bh(x)\)。红黑树的黑高度定义为其根结点的黑高度。

  

给定正整数 \(N\),试设计一个算法,计算出在所有含有 \(N\) 个结点的红黑树中,红色内结点个数的最小值和最大值。

Input

  输入共一个数 \(N\)。

Output

  输出共两行。

  第一行为红色内结点个数的最小值,第二行为最大值。

Sample Input

8

Sample Output

1
4

HINT

对于 100% 的数据,\(1≤N≤5000\)

Solution

设 \(f[i][j][0/1]\) 表示节点数为 \(i\) 的子树,该树的黑高度为 \(j\),根节点颜色为红/黑,容易想出 \(n^3\) 的转移方程:

\[f[x][h][0]=\min\{f[y][h][1]+f[x-y-1][h][1]\}+1\\
f[x][h][1]=\min\{f[y][h-1][0/1]+f[x-y-1][h-1][0/1]\}
\]

有个性质,黑高度是 \(O(\log n)\) 级别的,那么复杂度就可以降为 \(O(n^2\log n)\)。

这里还有一种 \(O(\log n)\) 的贪心做法:

一棵 \(n\) 个节点的红黑树,前端节点的个数一定是 \(n+1\) 个,证明考虑先证出一条链的情况,然后无论怎么移动节点都不变。

于是就相当于将 \(n+1\) 个黑点合并成一个根节点,每次我们将一部分黑节点合并成一个黑节点,无非就这三种情况:

(图片来自这里

这三棵树的黑高度都是相同的,可以逐层合并,对于最小值,我们就两个两个合并,最大值就四个四个合并。具体见代码。

注意代码中加 \(!!!\) 的那一行,由于 \(2/4*2=0\),因此要单独判断。

Code

#include <cstdio>

int main() {
int n, m, ans = 0;
scanf("%d", &n), m = n + 1;
while (m > 1) ans += m & 1, m >>= 1;
printf("%d\n", ans), m = n + 1, ans = 0;
while (m > 1) {
if (m == 2) ++ans, --m; //!!!
else if ((m & 3) == 1) ans += ((m >> 2) << 1) - 1, m = (m >> 2) + 1;
else if ((m & 3) == 2) ans += (m >> 2) << 1, m = (m >> 2) + 1;
else if ((m & 3) == 3) ans += ((m >> 2) << 1) + 1, m = (m >> 2) + 1;
else ans += m >> 1, m >>= 2;
}
printf("%d\n", ans);
return 0;
}

[BZOJ 3227] [SDOI 2008] 红黑树(tree)的更多相关文章

  1. BZOJ 3227: [Sdoi2008]红黑树(tree)

    BZOJ 3227: [Sdoi2008]红黑树(tree) 标签(空格分隔): OI-BZOJ OI-其它 Time Limit: 10 Sec Memory Limit: 128 MB Descr ...

  2. BZOJ.3227.[SDOI2008]红黑树tree(树形DP 思路)

    BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移 ...

  3. Bzoj3227 [Sdoi2008]红黑树(tree)

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 204  Solved: 125 Description 红黑树是一类特殊的二叉搜索树,其中每个结点被染 ...

  4. BZOJ 3227 [Sdoi2008]红黑树(tree) ——贪心 动态规划

    首先可以想到一个贪心的方法,然后一层一层的合并. 也可以采用动态规划的方式,为了写起来好写,把点数*2+1,然后发现在本机上跑不过1500的数据. 交上去居然A掉了. 贪心 #include < ...

  5. [BZOJ 2186][SDOI 2008] 莎拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 4519  Solved: 1560[Submit][S ...

  6. [BZOJ 2186] [SDOI 2008] 沙拉公主的困惑

    Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为 \(1\) 到 \(N\) 的阶乘,但是,政府只发行编号与 \(M!\) 互质的钞票.房地产第 ...

  7. bzoj 3231 [ Sdoi 2008 ] 递归数列 —— 矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 裸矩阵乘法. 代码如下: #include<iostream> #incl ...

  8. BZOJ 2190 SDOI 2008 仪仗队 线性欧拉筛

    标题效果:有一个格子组件图,假设三个人在一条直线上,那么第一个人将不会看到第三人.现在,有一个人站在(1,1)在.我问他是否能看到n*n的人数的矩阵. 思考:如果你想站(1,1)这名男子看到了一个立场 ...

  9. BZOJ-3227 红黑树(tree) 树形DP

    个人认为比较好的(高端)树形DP,也有可能是人傻 3227: [Sdoi2008]红黑树(tree) Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1 ...

随机推荐

  1. 简易调色盘控件 for .NET(EN)

    By Conmajia Originally posted in 2012 Introduction Simple & fast implementation of a rectangular ...

  2. DSAPI 图形图像篇(上)

    彩色文字对象 基于一些特殊需求,本人开发了彩色文字对象,该功能通过类似html代码的方式指示文本,并输出图像. 我们还是先来看一张图像. 这不是文本,是通过指定文本代码输出的图像.我们来看一下实现代码 ...

  3. 关于C# 中的布尔运算符 "&" "|” 与 其类似的条件布尔运算符 "&&" "||" 区别说明。

    运算符使用说明如下:  分隔符 ———————————————————————————— 分隔符 ———————————————————————————— 上述两个运算符的结果与&和 | 完全 ...

  4. DevExpress AspxGridView分页使用隐藏系统默认英文分页

    1第一篇文章研究了怎么汉化,但是在实际使用过程中发现汉化的有小问题,DevExpress支持自定义按钮,也可以在属性中设置成中文,这样避免汉化不准确的问题 <dx:ASPxGridView ID ...

  5. activemq配置安装

    1.了解JMS查看百度百科 https://baike.baidu.com/item/JMS/2836691?fr=aladdin 2.了解ActiveMQ https://baike.baidu.c ...

  6. axios+Vue上传文件显示进度

    一,前言 最近在用Vue,然后上传文件时需要显示进度,于是网上搜了一下,经过自己实测终于也弄明白了 二,效果 三,代码 HTML代码 <div id="app"> &l ...

  7. ArcPy 拷贝数据库

    使用Python脚本进行图形数据库的拷贝. 原始帖子地址:https://www.2cto.com/database/201302/187391.html 整理Python代码: # -*- codi ...

  8. Android launcher 壁纸 wallpaper

    壁纸分为动态和静态两种: 如果只需要修改默认静态壁纸,替换frameworks/base/core/res/res/drawable/default_wallpaper.jpg即可,或者在源码中修改对 ...

  9. Android View的重绘过程之Layout

    博客首页:http://www.cnblogs.com/kezhuang/p/ View绘制的三部曲,测量,布局,绘画现在我们分析布局部分测量部分在上篇文章中已经分析过了.不了解的可以去我的博客里找一 ...

  10. 自托管websocket和webapi部署云服务器域名及远程访问

    当写完websocket和webapi服务端时,在本地测试时是没有问题的,因为是通过本地IP及端口号访问(例:127.0.0.1:8080\api\test),也就没有防火墙等安全限制,但当部署到云服 ...