【XSY2851】蛋糕 数学
题目大意
有一个边长为 \(1\) 的正 \(n\) 边形,你要把这个正 \(n\) 边形放到一个正 \(m\) 边形里面,且两个多边形的中心重合。
问你这个正 \(m\) 边形的边长最小是多少。
\(n,m\leq {10}^9\)
题解
对于一种合法的方案,把这个正 \(n\) 边形旋转 \(\frac{2\pi}{m}\) 度之后也能放到这个正 \(m\) 边形里面。
那么把所有 \(\frac{m}{\gcd(n,m)}\) 种多边形拼到一起之后就会得到一个 \(\operatorname{lcm}(n,m)\) 边形。
现在我们要把正 \(\operatorname{lcm}(n,m)\) 边形塞进一个正 \(m\) 边形。
这就很简单了。
这个正 \(m\) 边形的每条边对准这个正 \(\operatorname{lcm}(n,m)\) 边形就好了。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<vector>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const db pi=acos(-1);
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
ll n,m;
int main()
{
open("b");
scanf("%lld%lld",&n,&m);
db r=1./2/sin(pi/n);
n=n/gcd(n,m)*m;
r*=cos(pi/n);
db ans=r*tan(pi/m)*2;
printf("%.10f\n",ans);
return 0;
}
【XSY2851】蛋糕 数学的更多相关文章
- NOIP模拟:切蛋糕(数学欧拉函数)
题目描述 BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...
- DFS:POJ1190-生日蛋糕(基础搜索)
生日蛋糕 Time Limit: 1000MS Memory Limit: 10000K 描述 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. ...
- 【LeetCode】1465. 切割后面积最大的蛋糕 Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 找最大间隔之积 日期 题目地址:https://lee ...
- 数学思想:为何我们把 x²读作x平方
要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...
- 速算1/Sqrt(x)背后的数学原理
概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...
- MarkDown+LaTex 数学内容编辑样例收集
$\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...
- 深度学习笔记——PCA原理与数学推倒详解
PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...
- Sql Server函数全解<二>数学函数
阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...
- *HDU 2451 数学
Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...
随机推荐
- iOS weak底层实现原理
今年年底做了很多决定,离开工作三年的深圳,来到了上海,发现深圳和上海在苹果这方面还是差距有点大的,上海的市场8成使用swift编程,而深圳8成的使用OC,这点还是比较让准备来上海打拼的苹果工程师有点小 ...
- 纯手写springIOC
大家好啊- 那么今天来带大家写一下spring的ioc. 其实也很简单,首先我们明白两点,java解析xml和java的反射机制,因为ioc就是主要是基于这两个来实现,今天只是简单的来大家实现下. 废 ...
- php去除数组中重复值,并返回结果!
array_unique(array) 只能处理value只有单个的数组. 去除有多个value数组,可以使用如下函数实现: function more_array_unique($arr=array ...
- Vue.js实现注册功能
编写html,通过vue-resource.js库向后台提交数据 <!DOCTYPE html> <html lang="en"> <head> ...
- Windows 2019 docker 速记
教程参考: http://www.runoob.com/docker/docker-tutorial.html 开发调试参考: https://www.cnblogs.com/xuebuwan/arc ...
- 生鲜配送管理系统_升鲜宝 V2.0 小程序辅助系统工具矩阵系列相关说明
随着微信红利的进一步释放,使用人群的不断增加,小程序从2017年01月第一批开发者出现后,2018年小程序得到快速的提升,小程序开发的相关应用小工具得到了市场的青咪,社会化大分工.协同.共享.协作的思 ...
- iOS---------获取当前年份
NSDate * senddate=[NSDate date]; NSDateFormatter *dateformatter=[[NSDateFormatter alloc] init]; [d ...
- appium+python搭建自动化测试框架_TestAPP框架(三)
Pycharm 创建 Project,搭建 APPTEST框架如下图: 1.框架功能 业务功能的封装 测试用例封装 测试包管理 截图处理 断言处理 日志获取 测试报告生成 数据驱动 数据配置 2. ...
- SpringBoot热部署-解决方案
在SpringBoot中启用热部署是非常简单的一件事,因为SpringBoot为我们提供了一个非常方便的工具spring-boot-devtools,我们只需要把这个工具引入到工程里就OK了,下面我就 ...
- 回归算法比较(线性回归,Ridge回归,Lasso回归)
代码: # -*- coding: utf-8 -*- """ Created on Mon Jul 16 09:08:09 2018 @author: zhen &qu ...