题目大意

  有一个边长为 \(1\) 的正 \(n\) 边形,你要把这个正 \(n\) 边形放到一个正 \(m\) 边形里面,且两个多边形的中心重合。

  问你这个正 \(m\) 边形的边长最小是多少。

  \(n,m\leq {10}^9\)

题解

  对于一种合法的方案,把这个正 \(n\) 边形旋转 \(\frac{2\pi}{m}\) 度之后也能放到这个正 \(m\) 边形里面。

  那么把所有 \(\frac{m}{\gcd(n,m)}\) 种多边形拼到一起之后就会得到一个 \(\operatorname{lcm}(n,m)\) 边形。

  现在我们要把正 \(\operatorname{lcm}(n,m)\) 边形塞进一个正 \(m\) 边形。

  这就很简单了。

  这个正 \(m\) 边形的每条边对准这个正 \(\operatorname{lcm}(n,m)\) 边形就好了。

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<vector>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
using std::vector;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
void open2(const char *s){
#ifdef DEBUG
char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const db pi=acos(-1);
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
ll n,m;
int main()
{
open("b");
scanf("%lld%lld",&n,&m);
db r=1./2/sin(pi/n);
n=n/gcd(n,m)*m;
r*=cos(pi/n);
db ans=r*tan(pi/m)*2;
printf("%.10f\n",ans);
return 0;
}

【XSY2851】蛋糕 数学的更多相关文章

  1. NOIP模拟:切蛋糕(数学欧拉函数)

    题目描述  BG 有一块细长的蛋糕,长度为 n. 有一些人要来 BG 家里吃蛋糕, BG 把蛋糕切成了若干块(整数长度),然后分给这些人. 为了公平,每个人得到的蛋糕长度和必须相等,且必须是连续的一段 ...

  2. DFS:POJ1190-生日蛋糕(基础搜索)

    生日蛋糕 Time Limit: 1000MS Memory Limit: 10000K 描述 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. ...

  3. 【LeetCode】1465. 切割后面积最大的蛋糕 Maximum Area of a Piece of Cake After Horizontal and Vertical Cuts

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 找最大间隔之积 日期 题目地址:https://lee ...

  4. 数学思想:为何我们把 x²读作x平方

    要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x²读作x平方呢? 古希腊时代,越来越多的 ...

  5. 速算1/Sqrt(x)背后的数学原理

    概述 平方根倒数速算法,是用于快速计算1/Sqrt(x)的值的一种算法,在这里x需取符合IEEE 754标准格式的32位正浮点数.让我们先来看这段代码: float Q_rsqrt( float nu ...

  6. MarkDown+LaTex 数学内容编辑样例收集

    $\color{green}{MarkDown+LaTex 数学内容编辑样例收集}$ 1.大小标题的居中,大小,颜色 [例1] $\color{Blue}{一元二次方程根的分布}$ $\color{R ...

  7. 深度学习笔记——PCA原理与数学推倒详解

    PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多, ...

  8. Sql Server函数全解<二>数学函数

    阅读目录 1.绝对值函数ABS(x)和返回圆周率的函数PI() 2.平方根函数SQRT(x) 3.获取随机函数的函数RAND()和RAND(x) 4.四舍五入函数ROUND(x,y) 5.符号函数SI ...

  9. *HDU 2451 数学

    Simple Addition Expression Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

随机推荐

  1. spring通知执行的顺序

    点击下载本示例相关代码 关于spring aop的具体使用,暂时不在这里讲解,后面会特定来讲解,本次主要探讨spring中通知执行的顺序. spring中通知分为以下几种: before:前置通知,在 ...

  2. javascript 函数后面有多个小括号f( )( )( )...

    有时我们看见js函数后面跟着多个小括号是什么意思?f( )( )( )... f()执行f函数,返回子函数 f()()执行子函数,返回孙函数 f()()()执行孙函数,返回重孙函数 ... ... 但 ...

  3. vue-cli3 中跨域解决方案

    此方案只能用于开发环境,线上最好设置同源策略(遇到个后端,装你妈批) 前后端不在同一服务器的情况下,前端要访问后端API,可通过在vue.config.js中配置代理服务器. 0:前提条件 1:安装v ...

  4. CSS的使用方法

    参考资料:http://css.cuishifeng.cn/ 一.CSS的四种引入方式 1.行内式 行内式是在标记的style属性中设定CSS样式.这种方式没有体现出CSS的优势,不推荐使用(与链接式 ...

  5. Spring boot入门(三):SpringBoot集成结合AdminLTE(Freemarker),利用generate自动生成代码,利用DataTable和PageHelper进行分页显示

    关于SpringBoot和PageHelper,前篇博客已经介绍过Spring boot入门(二):Spring boot集成MySql,Mybatis和PageHelper插件,前篇博客大致讲述了S ...

  6. Nginx支持 React browser router

    修改nginx配置文件,添加try_file配置如下,即可实现对 React browser router 的支持. location / { root /var/www/mysite; try_fi ...

  7. 解决在圆角手机(如小米8)上自定义Dialog无法全屏的问题

    在小米8等一系列圆角的手机上测试项目时,发现我的自定义dialog无法全屏了,这时我的dialog全屏的解决方案还是和网上大部分人是一样的 Window window = getWindow(); i ...

  8. git开发常用命令

    1.基本命令git branch 查看本地分支git branch -r 查看远程分支git checkout xxx 切换分支git pull origin master //从远程同步到本地,ma ...

  9. lodash源码分析之去重--uniq方法

    lodash.js包是node开发中常用的js工具包,里面有许多实用的方法,今天分析常用的一个去重方法---uniq 用法 _.uniq([2, 1, 2]) // => [2, 1] 源码包 ...

  10. python中os模块和sys模块的常见用法

    OS模块的常见用法 os.remove()   删除文件 os.rename()   重命名文件 os.walk()    生成目录树下的所有文件名 os.chdir()    改变目录 os.mkd ...