Sol

推导:\(n<m,p为质数\)

\(ans=\sum_p\sum_{i=1}^{\frac{n}{p}}\mu(i)\frac{n}{pi}\frac{m}{pi}\)

\(=\sum_{k=1}^{n}\frac{n}{k}\frac{m}{k}\sum_{p|k}\mu(\frac{k}{p})\)

\(\sum_{p|k}\mu(\frac{k}{p})\)可以暴力预处理,也可以在筛的时候计算出

暴力求

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int prime[_], num, mu[_], f[_];
bool isprime[_]; IL void Prepare(){
isprime[1] = 1; mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{ mu[i * prime[j]] = 0; break; }
}
}
for(RG int i = 1; i < _; ++i)
for(RG int j = 1; j <= num && i * prime[j] < _; ++j)
f[i * prime[j]] += mu[i];
for(RG int i = 1; i < _; ++i) f[i] += f[i - 1];
} int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG ll n = Read(), m = Read(), ans = 0;
if(n > m) swap(n, m);
for(RG ll k = 1, j; k <= n; k = j + 1){
j = min(n / (n / k), m / (m / k));
ans += (n / k) * (m / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", ans);
}
return 0;
}

筛的时候处理

# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1); IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
} int prime[_], num, mu[_], f[_];
bool isprime[_]; IL void Prepare(){
isprime[1] = 1; mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1, f[i] = 1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i], f[i * prime[j]] = mu[i] - f[i];
else{ mu[i * prime[j]] = 0; f[i * prime[j]] = mu[i]; break; }
}
}
for(RG int i = 1; i < _; ++i) f[i] += f[i - 1];
} int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG ll n = Read(), m = Read(), ans = 0;
if(n > m) swap(n, m);
for(RG ll k = 1, j; k <= n; k = j + 1){
j = min(n / (n / k), m / (m / k));
ans += (n / k) * (m / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", ans);
}
return 0;
}

BZOJ2820:YY的GCD的更多相关文章

  1. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  2. BZOJ2820 YY的GCD 【莫比乌斯反演】

    BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...

  3. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  4. BZOJ2820:YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  5. Bzoj-2820 YY的GCD Mobius反演,分块

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...

  6. 【莫比乌斯反演】BZOJ2820 YY的GCD

    Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...

  7. BZOJ2820: YY的GCD(反演)

    题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...

  8. 【反演复习计划】【bzoj2820】YY的GCD

    这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...

  9. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  10. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

随机推荐

  1. kubernetes 集群的安装部署

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: 首先kubernetes得官方文档我自己看着很乱,信息很少, ...

  2. Java导出freemarker的三种方法

    在上一篇呢,我将导出word文档的想法与思路以及实现功能的代码分享了一下,在这里, 我想说的是我对导出freemarker模板路径的三种方法的理解和认知.  有错误的话希望大家帮忙指正 在接下来我会使 ...

  3. linux中/bin和/sbin和/usr/bin和/usr/sbin

    首先先解释一下bin和sbin的意思: 1.bin:为任何用户都可以使用的指令 2.sbin:(super bin)也就是只有超级管理员才能使用的指令 /usr    UNIX Software Re ...

  4. Activiti中的各个service的作用

    各个Service的作用: RepositoryService 管理流程定义 RuntimeService 执行管理,包括启动.推进.删除流程实例等操作 TaskService 任务管理 Histor ...

  5. c中有序表的简单定义

    #include <iostream> using namespace std; #define MaxSize 50 typedef int ElemType; //定义变量int的别名 ...

  6. JavaScript 一个进行枚举选择的jquery插件(仿easyui风格)

    某次做项目要实现一个功能: 按星期选择一个连续的时间范围 比如:周一到周五,周六到周日 或 周六到周三 聪明的朋友马上想出办法:用两个选项为周一到周日的下拉列表实现,对 那样可以,但是我觉得不够友好, ...

  7. wpf 如何让控件左右移动

    通过DoubleAnimation可以让控件进行左右移动. <Canvas x:Name="canvas_Shape" HorizontalAlignment="S ...

  8. CNN 卷积层输入Map大小计算

    对于输出的size计算: out_height=((input_height - filter_height + padding_top+padding_bottom)/stride_height ) ...

  9. 如何使用 libqr 库生成二维码?

    使用 libqr 库只需 4 步即可生成二维码 1.初始化 QRCode 结构体 QRCode *qrInit(int version, int mode, int eclevel, int mask ...

  10. mysql 学习心得5

    常用函数 字符串函数 concat(S1,S2....,Sn) 链接s1 s2 ...... 任何字符串和null链接显示为null insert(str,x,y,instr)  将str从x位开始y ...