BZOJ2820:YY的GCD
Sol
推导:\(n<m,p为质数\)
\(ans=\sum_p\sum_{i=1}^{\frac{n}{p}}\mu(i)\frac{n}{pi}\frac{m}{pi}\)
\(=\sum_{k=1}^{n}\frac{n}{k}\frac{m}{k}\sum_{p|k}\mu(\frac{k}{p})\)
\(\sum_{p|k}\mu(\frac{k}{p})\)可以暴力预处理,也可以在筛的时候计算出
暴力求
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1);
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
int prime[_], num, mu[_], f[_];
bool isprime[_];
IL void Prepare(){
isprime[1] = 1; mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i];
else{ mu[i * prime[j]] = 0; break; }
}
}
for(RG int i = 1; i < _; ++i)
for(RG int j = 1; j <= num && i * prime[j] < _; ++j)
f[i * prime[j]] += mu[i];
for(RG int i = 1; i < _; ++i) f[i] += f[i - 1];
}
int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG ll n = Read(), m = Read(), ans = 0;
if(n > m) swap(n, m);
for(RG ll k = 1, j; k <= n; k = j + 1){
j = min(n / (n / k), m / (m / k));
ans += (n / k) * (m / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
筛的时候处理
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Zsydalao 666
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1);
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
int prime[_], num, mu[_], f[_];
bool isprime[_];
IL void Prepare(){
isprime[1] = 1; mu[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i, mu[i] = -1, f[i] = 1;
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(i % prime[j]) mu[i * prime[j]] = -mu[i], f[i * prime[j]] = mu[i] - f[i];
else{ mu[i * prime[j]] = 0; f[i * prime[j]] = mu[i]; break; }
}
}
for(RG int i = 1; i < _; ++i) f[i] += f[i - 1];
}
int main(RG int argc, RG char *argv[]){
Prepare();
for(RG int T = Read(); T; --T){
RG ll n = Read(), m = Read(), ans = 0;
if(n > m) swap(n, m);
for(RG ll k = 1, j; k <= n; k = j + 1){
j = min(n / (n / k), m / (m / k));
ans += (n / k) * (m / k) * (f[j] - f[k - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
BZOJ2820:YY的GCD的更多相关文章
- [BZOJ2820]YY的GCD
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...
- BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- Bzoj-2820 YY的GCD Mobius反演,分块
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd( ...
- 【莫比乌斯反演】BZOJ2820 YY的GCD
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑 ...
- BZOJ2820: YY的GCD(反演)
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n} ...
- 【反演复习计划】【bzoj2820】YY的GCD
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
随机推荐
- Project support for both iOS 6 and iOS 7
原文:https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/TransitionGuide/S ...
- 归并排序Merge Sort
//C语言实现 void mergeSort(int array[],int first, int last) { if (first < last)//拆分数列中元素只剩下两个的时候,不再拆分 ...
- 微信小程序 页面跳转传递数据
点击view 跳转页面 <view class="album_image" data-album-obj="{{item}}" bindtap=" ...
- C++ 函数模板“偏特化”
模板是C++中很重要的一个特性,利用模板可以编写出类型无关的通用代码,极大的减少了代码量,提升工作效率.C++中包含类模板.函数模板,对于需要特殊处理的类型,可以通过特化的方式来实现特定类型 ...
- WinServer2012 R2忘记密码的解决方案+远程连接另一种莫名其妙故障
http://www.cnblogs.com/dunitian/p/4822808.html#iis 之前朋友有问道我WinServer2003密码破解的事情,基本上密码忘记了都是进PE用密码清除的工 ...
- 网卡name-eth1如何修改为eth0
正常来说,Linux在识别网卡时第一张会是eth0,第二张才是eth1. 有时候我们使用虚拟机克隆技术后网卡的信息就会改变,新克隆出来的虚拟主机网卡名字可能变为eth1.无论我们怎么修改都无法改变,这 ...
- 读取Pdm文件内容(含源码)
Pdm文件,就是PowerDesigner软件生成的文件,用来设计数据库表结构非常适合.其实,它的文件存储格式就是Xml,网上有很多代码,可以读取pdm文件内容.代码可以使用,但一般只能读取简单的pd ...
- Java GC分析记录
Java GC记录 近来.项目没有特别忙碌的时候,抽空看了下生产环境的项目运行状况,我们的项目一直运行速度不是很快,偶尔会出现卡顿的现象,这点给人的体验感觉也就不那么好了.先抛个测试环境截图(生产环境 ...
- ASP.NET Core的身份认证框架IdentityServer4--(4)添加第三方快捷登录
添加对外部认证的支持 接下来我们将添加对外部认证的支持.这非常简单,因为你真正需要的是一个兼容ASP.NET Core的认证处理程序. ASP.NET Core本身也支持Google,Facebook ...
- Java集合中的AbstractMap抽象类
jdk1.8.0_144 AbstractMap抽象类实现了一些简单且通用的方法,本身并不难.但在这个方法中有两个方法非常值得关注,keySet和values方法源码的实现可以说是教科书式的典范. 抽 ...