【BZOJ3669】【Noi2014】魔法森林(Link-Cut Tree)

题面

题目描述

为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士。魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…,m。初始时小 E 同学在 1 号节点,隐士则住在 n 号节点。小 E 需要通过这一片魔法森林,才能够拜访到隐士。

魔法森林中居住了一些妖怪。每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击。幸运的是,在 1 号节点住着两种守护精灵:A 型守护精灵与 B 型守护精灵。小 E 可以借助它们的力量,达到自己的目的。

只要小 E 带上足够多的守护精灵,妖怪们就不会发起攻击了。具体来说,无 向图中的每一条边 ei 包含两个权值 ai 与 bi 。若身上携带的 A 型守护精灵个数不 少于 ai ,且 B 型守护精灵个数不少于 bi ,这条边上的妖怪就不会对通过这条边 的人发起攻击。当且仅当通过这片魔法森林的过程中没有任意一条边的妖怪向 小 E 发起攻击,他才能成功找到隐士。

由于携带守护精灵是一件非常麻烦的事,小 E 想要知道,要能够成功拜访到 隐士,最少需要携带守护精灵的总个数。守护精灵的总个数为 A 型守护精灵的 个数与 B 型守护精灵的个数之和。

输入输出格式

输入格式:

输入文件的第 1 行包含两个整数 n,m,表示无向图共有 n 个节点,m 条边。 接下来 m 行,第i+ 1 行包含 4 个正整数 Xi,Yi,ai,bi,描述第i条无向边。 其中Xi与 Yi为该边两个端点的标号,ai 与 bi 的含义如题所述。 注意数据中可能包含重边与自环。

输出格式:

输出一行一个整数:如果小 E 可以成功拜访到隐士,输出小 E 最少需要携 带的守护精灵的总个数;如果无论如何小 E 都无法拜访到隐士,输出“-1”(不 含引号)。

输入输出样例

输入样例#1:

4 5

1 2 19 1

2 3 8 12

2 4 12 15

1 3 17 8

3 4 1 17

输出样例#1:

32

输入样例#2:

3 1

1 2 1 1

输出样例#2:

-1

题解

有些东西真的就是套路

比如这道题目

先讲讲这道题目\(SPFA\)怎么做

把边按照\(a\)排序之后,依次加边,权值为\(b\)

每次跑一边\(SPFA\),最后求解即可

因为边是增加的,所以每次的\(dis\)值不用更新

那么,我们接着考虑

按照\(a\)排序之后,不断加边,如何求最大边权的最小值

是不是想到了货车运输?

很显然,我们要求最小生成树

但是因为边是动态的,所以需要\(LCT\)来维护

每次新加入一条边,如何两个点已经联通,

那么检查两点之间的路径的最大权值,和当前边比较

如果更大,则断开那条边,把这一条边给连接上去

否则这一条边不用连接

但是。。。

怎么实现?

\(LCT\)真心套路

对于\(LCT\)维护边权

不能像树链剖分那样子,把边权放在点权上维护

需要把边看做一个新的节点再去进行操作(所以\(LCT\)开\(n+m\)的空间???)

到时候我一定要找时间填\(LCT\)的坑。。。。(树链剖分我是真的懒得填坑了。。。)

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 51000
#define lson (t[x].ch[0])
#define rson (t[x].ch[1])
#define INF 2000000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Node
{
int ff,ch[2];
int rev;
int v,mi;
}t[MAX<<2];
int S[MAX],top=1;
int n,m,ans=INF;
struct Line
{
int u,v,a,b;
}e[MAX<<2];
bool operator<(Line a,Line b)
{
if(a.a!=b.a)return a.a<b.a;
return a.b<b.b;
}
bool isroot(int x){return t[t[x].ff].ch[0]!=x&&t[t[x].ff].ch[1]!=x;}
void pushdown(int x)
{
if(t[x].rev)
{
t[lson].rev^=1;
t[rson].rev^=1;
t[x].rev^=1;
swap(t[x].ch[0],t[x].ch[1]);
}
}
void pushup(int x)
{
t[x].mi=x;
if(lson&&t[t[lson].mi].v>t[t[x].mi].v)t[x].mi=t[lson].mi;
if(rson&&t[t[rson].mi].v>t[t[x].mi].v)t[x].mi=t[rson].mi;
}
void rotate(int x)
{
int y=t[x].ff,z=t[y].ff;
int k=t[y].ch[1]==x;
if(!isroot(y))t[z].ch[t[z].ch[1]==y]=x;t[x].ff=z;
t[y].ch[k]=t[x].ch[k^1];t[t[x].ch[k^1]].ff=y;
t[x].ch[k^1]=y;t[y].ff=x;
pushup(y);pushup(x);
}
void Splay(int x)
{
S[top=1]=x;
for(int i=x;!isroot(i);i=t[i].ff)S[++top]=t[i].ff;
while(top)pushdown(S[top--]);
while(!isroot(x))
{
int y=t[x].ff,z=t[y].ff;
if(!isroot(y))
(t[z].ch[0]==y)^(t[y].ch[0]==x)?rotate(x):rotate(y);
rotate(x);
}
}
void access(int x){for(int y=0;x;y=x,x=t[x].ff)Splay(x),t[x].ch[1]=y,pushup(x);}
void makeroot(int x){access(x);Splay(x);t[x].rev^=1;}
int getroot(int x){access(x);Splay(x);while(t[x].ch[0])x=t[x].ch[0];return x;}
void split(int x,int y){makeroot(x);access(y);Splay(y);}
void cut(int x,int y){split(x,y);t[y].ch[0]=t[x].ff=0;pushup(y);}
void link(int x,int y){makeroot(x);t[x].ff=y;}
int Query(int x,int y){split(x,y);return t[y].mi;}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)
e[i].u=read(),e[i].v=read(),e[i].a=read(),e[i].b=read();
sort(&e[1],&e[m+1]);
for(int i=1;i<=m;++i)
{
int u=e[i].u,v=e[i].v,a=e[i].a,b=e[i].b;
if(getroot(u)==getroot(v))
{
int mm=Query(u,v);
if(t[mm].v>b)
cut(e[mm-n].u,mm),cut(e[mm-n].v,mm);
else continue;
}
t[i+n].v=b;t[i+n].mi=i+n;
link(u,i+n);link(v,i+n);
int aa=getroot(1),bb=getroot(n);
if(getroot(1)==getroot(n))
ans=min(ans,a+t[Query(1,n)].v);
}
printf("%d\n",ans==INF?-1:ans);
return 0;
}

【BZOJ3669】【Noi2014】魔法森林(Link-Cut Tree)的更多相关文章

  1. [NOI2014] 魔法森林 - Link Cut Tree

    [NOI2014] 魔法森林 Description 给定一张图,每条边 \(i\) 的权为 \((a_i,b_i)\), 求一条 \(1 \sim n\) 路径,最小化 \(\max_{i\in P ...

  2. bzoj3669: [Noi2014]魔法森林 lct版

    先上题目 bzoj3669: [Noi2014]魔法森林 这道题首先每一条边都有一个a,b 我们按a从小到大排序 每次将一条路劲入队 当然这道题权在边上 所以我们将边化为点去连接他的两个端点 当然某两 ...

  3. [bzoj3669][Noi2014]魔法森林_LCT_并查集

    魔法森林 bzoj-3669 Noi-2014 题目大意:说不明白题意系列++……题目链接 注释:略. 想法:如果只有1个参量的话spfa.dij什么的都上来了. 两个参量的话我们考虑,想将所有的边按 ...

  4. BZOJ3669[Noi2014]魔法森林——kruskal+LCT

    题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住 ...

  5. BZOJ3669: [Noi2014]魔法森林(瓶颈生成树 LCT)

    Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 3558  Solved: 2283[Submit][Status][Discuss] Descript ...

  6. BZOJ3669 [Noi2014]魔法森林(SPFA+动态加边)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  7. 沉迷Link-Cut tree无法自拔之:[BZOJ3669][Noi2014] 魔法森林

    来自蒟蒻 \(Hero \_of \_Someone\) 的 \(LCT\) 学习笔记 $ $ 有一个很好的做法是 \(spfa\) ,但是我们不聊 \(spfa\) , 来聊 \(LCT\) \(L ...

  8. [bzoj3669][Noi2014]魔法森林——lct

    Brief description 给定一个无向图,求从1到n的一条路径使得这条路径上最大的a和b最小. Algorithm Design 以下内容选自某HN神犇的blog 双瓶颈的最小生成树的感觉, ...

  9. bzoj3669[Noi2014]魔法森林

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  10. bzoj3669: [Noi2014]魔法森林 lct

    记得去年模拟赛的时候好像YY出二分答案枚举a,b的暴力,过了55欸 然后看正解,为了将两维变成一维,将a排序,模拟Kruskal的加边过程,同时维护1到n的最大值,加入一条边e(u,v,a,b)时有以 ...

随机推荐

  1. win8 -telnet安装

    控制面板->程序-> 启动或关闭windows功能->选择telnet服务器和telnet客户端->确定 为了安全起见,我们可以设置为手动器用telnet,右键计算机-> ...

  2. 【Tools】Pycharm 2018专业版 linux安装教程 附2018专业版密钥

    Linux安装pycharm2018专业版 1. 下载安装包 Pycharm下载地址:http://www.jetbrains.com/pycharm/download/ 2.终端打开你的安装包所在路 ...

  3. 携程Apollo(阿波罗)配置中心在.NET Core项目快速集成

    .NET Core的支持文档大体上可以参考文档.Net客户端使用指南:https://github.com/ctripcorp/apollo/wiki/.Net%E5%AE%A2%E6%88%B7%E ...

  4. bzoj2876 [NOI2012]骑行川藏(拉格朗日乘数法)

    题目描述 蛋蛋非常热衷于挑战自我,今年暑假他准备沿川藏线骑着自行车从成都前往拉萨.川藏线的沿途有着非常美丽的风景,但在这一路上也有着很多的艰难险阻,路况变化多端,而蛋蛋的体力十分有限,因此在每天的骑行 ...

  5. Linux系统Go开发环境搭建

    Go 语言是由谷歌的科学家开发的,并开源的新语言,被誉为"21世纪的C语言",它的主要目标是将静态语言的安全性和高效性与动态语言的易开发性进行有机结合,达到完美平衡,从而使编程变得 ...

  6. 中小研发团队架构实践之应用监控Metrics

    一.Metrics简介        应用监控系统Metrics由Metrics.NET+InfluxDB+Grafana组合而成,通过客户端Metrics.NET在业务代码中埋点,Metrics.N ...

  7. PyCharm安装Pygame方法

    最近在自学Python,然后终于到了项目实战的时候了,而且还是做一个游戏,热情直接被调动起来了,嘿嘿 首先要安装一个Pygame 环境 win7 先去 这里 下载对应Python的Pygame版本 如 ...

  8. java多线程编程——锁优化

    并发环境下进行编程时,需要使用锁机制来同步多线程间的操作,保证共享资源的互斥访问.加锁会带来性能上的损坏,似乎是众所周知的事情.然而,加锁本身不会带来多少的性能消耗,性能主要是在线程的获取锁的过程.如 ...

  9. selenium自动化测试配置工具整理

    firefox浏览器历史版本 网址通道:http://ftp.mozilla.org/pub/firefox/releases/ chromedriver历史版本 网址通道:http://chrome ...

  10. applicationContext.xml最基本配置文件

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...