有些脚本发现比预期要慢的多,就需要找到瓶颈,然后做相应的优化,参考A guide to analyzing Python performance,也可以说是翻译。

指标

  • 运行时间
  • 时间瓶颈
  • 内存使用
  • 是否有内存泄漏

基本

linux time

这是个shell中自带的命令,也是最简单和方面的方法,但是得到信息太少

[root@bogon util]# time python pvsts.py
Yesterday PV/UV

PV 46300
UV is 3899

real    2m36.591s  #花费时间
user    2m37.167s  #用户态时间
sys     0m2.010s   #内核态时间

如果 sys+userreal 小的多,就要考虑io等待时间是否过长了。

使用Cprofile工具

用起来很简单,显示的东西也很多,但是对于代码来说不是很直观

[root@bogon util]# python -m cProfile pvsts.py
Yesterday PV/UV

PV 46300
UV is 3899
         502249600 function calls (502249597 primitive calls) in 250.221 CPU seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
        1    0.000    0.000  250.221  250.221 <string>:1(<module>)
        1    0.000    0.000    0.000    0.000 __future__.py:48(<module>)
        1    0.000    0.000    0.000    0.000 __future__.py:74(_Feature)
        7    0.000    0.000    0.000    0.000 __future__.py:75(__init__)
        1    0.000    0.000    0.000    0.000 __init__.py:49(normalize_encoding)
        1    0.000    0.000    0.000    0.000 __init__.py:71(search_function)
        1    0.000    0.000    0.000    0.000 base64.py:3(<module>)

测试时间工具line_profiler

就是这个小工具,安装很simple

$ pip install line_profiler

在想要测试的函数上添加一个 @profile装饰器(不用倒入任何包,工具会自动倒入)

@profile
def sts_uv():
        #mac_list = []
        mac_set = set()
        with open(temp_log, 'r') as f:
                for line in f.readlines():
                        basid, mac, ip = decode_token(str(line.strip()))
                        #mac_list.append(mac)
                        mac_set.add(mac)
        #uv = len(set(mac_list))
        uv = len(mac_set)
        print "UV is {0}".format(uv)
        return uv

得到结果:

[root@bogon util]# kernprof -l -v pvsts.py
Yesterday PV/UV

PV 46300
UV is 3899
Wrote profile results to pvsts.py.lprof
Timer unit: 1e-06 s

Total time: 450.299 s
File: pvsts.py
Function: sts_uv at line 74

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    74                                           @profile
    75                                           def sts_uv():
    76                                                  #mac_list = []
    77         1           10     10.0      0.0          mac_set = set()
    78         1           59     59.0      0.0         with open(temp_log, 'r') as f:
    79     42431        38556      0.9      0.0                 for line in f.readlines():
    80     42430    450188794  10610.2    100.0                         basid, mac, ip = decode_token(str(line.strip()))
    81                                                                  #mac_list.append(mac)
    82     42430        71491      1.7      0.0                          mac_set.add(mac)
    83                                                  #uv = len(set(mac_list))
    84         1            2      2.0      0.0          uv = len(mac_set)
    85         1           15     15.0      0.0         print "UV is {0}".format(uv)
    86         1            1      1.0      0.0         return uv

同时还是会生成一个pvsts.py.lprof文件

测试内存使用 pip install -U memory_profiler

安装两个工具

$ pip install -U memory_profiler
$ pip install psutil

使用上也是添加一个 ‘@profile’ 装饰器,跟上面的一样。

测试

[root@bogon util]# python -m memory_profiler pvsts.py
Yesterday PV/UV

PV 46300
UV is 3899
Filename: pvsts.py

Line #    Mem usage    Increment   Line Contents
================================================
    74    9.676 MiB    0.000 MiB   @profile
    75                             def sts_uv():
    76                                  #mac_list = []
    77    9.676 MiB    0.000 MiB           mac_set = set()
    78    9.676 MiB    0.000 MiB        with open(temp_log, 'r') as f:
    79   15.289 MiB    5.613 MiB                for line in f.readlines():
    80   15.289 MiB    0.000 MiB                        basid, mac, ip = decode_token(str(line.strip()))
    81                                                  #mac_list.append(mac)
    82   15.289 MiB    0.000 MiB                           mac_set.add(mac)
    83                                  #uv = len(set(mac_list))
    84   14.961 MiB   -0.328 MiB           uv = len(mac_set)
    85   14.961 MiB    0.000 MiB        print "UV is {0}".format(uv)
    86   14.961 MiB    0.000 MiB        return uv

声明:

本文出自 “orangleliu笔记本” 博客,转载请务必保留此出处http://blog.csdn.net/orangleliu/article/details/45934005 作者orangleliu 采用署名-非商业性使用-相同方式共享协议

[Python]程序性能分析的更多相关文章

  1. Python程序性能分析模块----------cProfile

    cProfile分析器可以用来计算程序整个运行时间,还可以单独计算每个函数运行时间,并且告诉你这个函数被调用多少次 def foo(): pass import cProfile cProfile.r ...

  2. python程序性能分析

    中文:http://www.cnblogs.com/zhouej/archive/2012/03/25/2379646.html 英文:https://www.huyng.com/posts/pyth ...

  3. Linux下的应用程序性能分析 总结

    Linux下的应用程序性能分析,根据内核程序和应用程序的不同,下文分两类进行描述. 我们侧重的是应用级别的程序,推荐google perf tool/kcachegrind组合 一.和内核有关的工具 ...

  4. Linux程序性能分析和火焰图

    Linux程序性能分析和火焰图 Linux程序的性能分析工具数量比较多,涉及到整个操作系统的方方面面,可能是开源的原因吧,相对于Windows来说丰富太多.其中应用分析性能方面Dtrace, Syst ...

  5. 八、jdk工具之JvisualVM、JvisualVM之二--Java程序性能分析工具Java VisualVM

    目录 一.jdk工具之jps(JVM Process Status Tools)命令使用 二.jdk命令之javah命令(C Header and Stub File Generator) 三.jdk ...

  6. Golang程序性能分析

    前言 程序性能分析我相信是每个程序员都会遇到的问题,比如说一个程序的CPU为什么占用这么高?有没有优化的空间?又比如程序出现了内存泄漏如何排查等等.如果是C++程序会借助于Google pprof c ...

  7. 一个python 服务器程序性能分析

    该服务器为bono,启动11个进程. 1.设置cprofile 在启动服务的总入口设置cprofile if __name__=="__main__": import cProfi ...

  8. 转帖:Python应用性能分析指南

    原文:A guide to analyzing Python performance While it’s not always the case that every Python program ...

  9. [golang]7种 Go 程序性能分析方法

    视频信息 Seven ways to Profile Go Applicationsby Dave Cheneyat Golang UK Conf. 2016 视频:https://www.youtu ...

随机推荐

  1. codeforces round #405 B. Bear and Friendship Condition

    B. Bear and Friendship Condition time limit per test 1 second memory limit per test 256 megabytes in ...

  2. NOIP 2015

    Prob.1 2015 神奇的幻方 模拟就好了.(这不是noip2017的初赛题么.)代码: #include<cstdio> #include<cstring> #inclu ...

  3. 【Codeforces Round #431 (Div. 1) D.Shake It!】

    ·最小割和组合数放在了一起,产生了这道题目. 英文题,述大意:     一张初始化为仅有一个起点0,一个终点1和一条边的图.输入n,m表示n次操作(1<=n,m<=50),每次操作是任选一 ...

  4. [bzoj4866] [Ynoi2017]由乃的商场之旅

    来自FallDream的博客,未经允许,请勿转载,谢谢, 由乃有一天去参加一个商场举办的游戏.商场派了一些球王排成一行.每个人面前有几堆球.说来也巧,由乃和你一样,觉得这游戏很无聊,于是决定换一个商场 ...

  5. django rest-framework 3.类 实现restful

    上节提到过,REST框架分别提供了对函数和类的装饰器,之前已经都是通过函数来写视图函数的,现在来尝试使用class 类来实现视图函数 使用基于类编写API视图,允许重用常用的功能,减少代码重复. 一. ...

  6. mooc- 基本程序设计方法week1,week2

    学习了第一单元我们几本可以写出10行左右的代码. week1:python编程之基本方法 1.从计算机到程序设计语言: 理解计算机:计算机是能够根据一组指令操作数据的机器. 功能性:可以进行数据计算 ...

  7. David MacKay:用信息论解释 '快速排序'、'堆排序' 本质与差异

    这篇文章是David MacKay利用信息论,来对快排.堆排的本质差异导致的性能差异进行的比较. 信息论是非常强大的,它并不只是一个用来分析理论最优决策的工具. 从信息论的角度来分析算法效率是一件很有 ...

  8. setuptools安装和错误解决

    错误解决:ImportError No module named setuptools GitHub: https://github.com/pypa/setuptools 下载安装 wget htt ...

  9. Printer for Me

    今天,良心系部终于给我配了打印机^^. 办公室门外还挂了牌子.

  10. hive 存储,解析,处理json数据

    hive 处理json数据总体来说有两个方向的路走 1.将json以字符串的方式整个入Hive表,然后通过使用UDF函数解析已经导入到hive中的数据,比如使用LATERAL VIEW json_tu ...