三星机试也考了类似的题目,只不过是要针对给出的数独修改其中三个错误数字,总过10个测试用例只过了3个与世界500强无缘了

36. Valid Sudoku

Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules.

The Sudoku board could be partially filled, where empty cells are filled with the character '.'.

A partially filled sudoku which is valid.

Note:

A valid Sudoku board (partially filled) is not necessarily solvable. Only the filled cells need to be validated.

Subscribe to see which companies asked this question

Idea

Just go through all you see (like "7 in row 3") and check for duplicates.

Solution 1

Using Counter. One logical line, seven physical lines.

def isValidSudoku(self, board):
return 1 == max(collections.Counter(
x
for i, row in enumerate(board)
for j, c in enumerate(row)
if c != '.'
for x in ((c, i), (j, c), (i/3, j/3, c))
).values() + [1])

The + [1] is only for the empty board, where max would
get an empty list and complain. It's not necessary to get it accepted here, as the empty board isn't among the test cases, but it's good to have.

Solution 2

Using len(set).

def isValidSudoku(self, board):
seen = sum(([(c, i), (j, c), (i/3, j/3, c)]
for i, row in enumerate(board)
for j, c in enumerate(row)
if c != '.'), [])
return len(seen) == len(set(seen))

Solution 3

Using any.

def isValidSudoku(self, board):
seen = set()
return not any(x in seen or seen.add(x)
for i, row in enumerate(board)
for j, c in enumerate(row)
if c != '.'
for x in ((c, i), (j, c), (i/3, j/3, c)))

Solution 4

Iterating a different way.

def isValidSudoku(self, board):
seen = sum(([(c, i), (j, c), (i/3, j/3, c)]
for i in range(9) for j in range(9)
for c in [board[i][j]] if c != '.'), [])
return len(seen) == len(set(seen))

Clean and Easy82ms Python

+11votes
402 views

class Solution(object):

def isValidSudoku(self, board):
"""
:type board: List[List[str]]
:rtype: bool
"""
big = set()
for i in xrange(0,9):
for j in xrange(0,9):
if board[i][j]!='.':
cur = board[i][j]
if (i,cur) in big or (cur,j) in big or (i/3,j/3,cur) in big:
return False
big.add((i,cur))
big.add((cur,j))
big.add((i/3,j/3,cur))

37. Sudoku Solver

Write a program to solve a Sudoku puzzle by filling the empty cells.

Empty cells are indicated by the character '.'.

You may assume that there will be only one unique solution.

A sudoku puzzle...

...and its solution numbers marked in red.

Subscribe to see which companies asked this question

最快的解决方案:

Sharing my 2ms C++ solution with comments and explanations.

+37votes

3,937 views

Update: there's a follow-up
0ms solution which is even more optimized

This is one of the fastest Sudoku solvers I've ever written. It is compact enough - just 150 lines of C++ code with comments. I thought it'd be interesting to share it, since it combines several techniques like
reactive network update propagation and backtracking with very aggressive pruning.

The algorithm is online - it starts with an empty board and as you add numbers to it, it starts solving the Sudoku.

Unlike in other solutions where you have bitmasks of allowed/disallowed values per row/column/square, this solution track bitmask for every(!) cell, forming a set of constraints for the allowed values for each particular
cell. Once a value is written into a cell, new constraints are immediately propagated to row, column and 3x3 square of the cell. If during this process a value of other cell can be unambiguously deduced - then the value is set, new constraints are propagated,
so on.... You can think about this as an implicit reactive network of cells.

If we're lucky (and we'll be lucky for 19 of 20 of Sudokus published in magazines) then Sudoku is solved at the end (or even before!) processing of the input.

Otherwise, there will be empty cells which have to be resolved. Algorithm uses backtracking for this purpose. To optimize it, algorithm starts with the cell with the smallest ambiguity. This could be improved even
further by using priority queue (but it's not implemented here). Backtracking is more or less standard, however, at each step we guess the number, the reactive update propagation comes back into play and it either quickly proves that the guess is unfeasible
or significantly prunes the remaining search space.

It's interesting to note, that in this case taking and restoring snapshots of the compact representation of the state is faster than doing backtracking rollback by "undoing the moves".

class Solution {
struct cell // encapsulates a single cell on a Sudoku board
{
uint8_t value; // cell value 1..9 or 0 if unset
// number of possible (unconstrained) values for the cell
uint8_t numPossibilities;
// if bitset[v] is 1 then value can't be v
bitset<10> constraints;
cell() : value(0), numPossibilities(9),constraints() {};
};
array<array<cell,9>,9> cells; // sets the value of the cell to [v]
// the function also propagates constraints to other cells and deduce new values where possible
bool set(int i, int j, int v)
{
// updating state of the cell
cell& c = cells[i][j];
if (c.value == v)
return true;
if (c.constraints[v])
return false;
c.constraints = bitset<10>(0x3FE); // all 1s
c.constraints.reset(v);
c.numPossibilities = 1;
c.value = v; // propagating constraints
for (int k = 0; k<9; k++) {
// to the row:
if (i != k && !updateConstraints(k, j, v))
return false;
// to the column:
if (j != k && !updateConstraints(i, k, v))
return false;
// to the 3x3 square:
int ix = (i / 3) * 3 + k / 3;
int jx = (j / 3) * 3 + k % 3;
if (ix != i && jx != j && !updateConstraints(ix, jx, v))
return false;
}
return true;
}
// update constraints of the cell i,j by excluding possibility of 'excludedValue'
// once there's one possibility left the function recurses back into set()
bool updateConstraints(int i, int j, int excludedValue)
{
cell& c = cells[i][j];
if (c.constraints[excludedValue]) {
return true;
}
if (c.value == excludedValue) {
return false;
}
c.constraints.set(excludedValue);
if (--c.numPossibilities > 1)
return true;
for (int v = 1; v <= 9; v++) {
if (!c.constraints[v]) {
return set(i, j, v);
}
}
assert(false);
} // backtracking state - list of empty cells
vector<pair<int, int>> bt; // find values for empty cells
bool findValuesForEmptyCells()
{
// collecting all empty cells
bt.clear();
for (int i = 0; i < 9; i++) {
for (int j = 0; j < 9; j++) {
if (!cells[i][j].value)
bt.push_back(make_pair(i, j));
}
}
// making backtracking efficient by pre-sorting empty cells by numPossibilities
sort(bt.begin(), bt.end(), [this](const pair<int, int>&a, const pair<int, int>&b) {
return cells[a.first][a.second].numPossibilities < cells[b.first][b.second].numPossibilities; });
return backtrack(0);
} // Finds value for all empty cells with index >=k
bool backtrack(int k)
{
if (k >= bt.size())
return true;
int i = bt[k].first;
int j = bt[k].second;
// fast path - only 1 possibility
if (cells[i][j].value)
return backtrack(k + 1);
auto constraints = cells[i][j].constraints;
// slow path >1 possibility.
// making snapshot of the state
array<array<cell,9>,9> snapshot(cells);
for (int v = 1; v <= 9; v++) {
if (!constraints[v]) {
if (set(i, j, v)) {
if (backtrack(k + 1))
return true;
}
// restoring from snapshot,
// note: computationally this is cheaper
// than alternative implementation with undoing the changes
cells = snapshot;
}
}
return false;
}
public:
void solveSudoku(vector<vector<char>> &board) {
cells = array<array<cell,9>,9>(); // clear array
// Decoding input board into the internal cell matrix.
// As we do it - constraints are propagated and even additional values are set as we go
// (in the case if it is possible to unambiguously deduce them).
for (int i = 0; i < 9; i++)
{
for (int j = 0; j < 9; j++) {
if (board[i][j] != '.' && !set(i, j, board[i][j] - '0'))
return; // sudoku is either incorrect or unsolvable
}
}
// if we're lucky we've already got a solution,
// however, if we have empty cells we need to use backtracking to fill them
if (!findValuesForEmptyCells())
return; // sudoku is unsolvable // copying the solution back to the board
for (int i = 0; i < 9; i++)
{
for (int j = 0; j < 9; j++) {
if (cells[i][j].value)
board[i][j] = cells[i][j].value + '0';
}
}
}
};


Simple and Clean Solution / C++

+14votes

871 views

bool check(vector<vector<char>> &board, int i, int j, char val)
{
int row = i - i%3, column = j - j%3;
for(int x=0; x<9; x++) if(board[x][j] == val) return false;
for(int y=0; y<9; y++) if(board[i][y] == val) return false;
for(int x=0; x<3; x++)
for(int y=0; y<3; y++)
if(board[row+x][column+y] == val) return false;
return true;
}
bool solveSudoku(vector<vector<char>> &board, int i, int j)
{
if(i==9) return true;
if(j==9) return solveSudoku(board, i+1, 0);
if(board[i][j] != '.') return solveSudoku(board, i, j+1); for(char c='1'; c<='9'; c++)
{
if(check(board, i, j, c))
{
board[i][j] = c;
if(solveSudoku(board, i, j+1)) return true;
board[i][j] = '.';
}
} return false;
}

public: void solveSudoku(vector<vector>& board) { solveSudoku(board, 0, 0); }

c++ clear solution using dfs, beating 90% c++ coder.

+10votes

690 views

class Solution {
public:
bool col[10][10],row[10][10],f[10][10];
bool flag = false;
void solveSudoku(vector<vector<char>>& board) {
memset(col,false,sizeof(col));
memset(row,false,sizeof(row));
memset(f,false,sizeof(f));
for(int i = 0; i < 9;i++){
for(int j = 0; j < 9;j++){
if(board[i][j] == '.') continue;
int temp = 3*(i/3)+j/3;
int num = board[i][j]-'0';
col[j][num] = row[i][num] = f[temp][num] = true;
}
}
dfs(board,0,0);
}
void dfs(vector<vector<char>>& board,int i,int j){
if(flag == true) return ;
if(i >= 9){
flag = true;
return ;
}
if(board[i][j] != '.'){
if(j < 8) dfs(board,i,j+1);
else dfs(board,i+1,0);
if(flag) return;
} else{
int temp = 3*(i/3)+j/3;
for(int n = 1; n <= 9; n++){
if(!col[j][n] && !row[i][n] && !f[temp][n]){
board[i][j] = n + '0';
col[j][n] = row[i][n] = f[temp][n] = true;
if(j < 8) dfs(board,i,j+1);
else dfs(board,i+1,0);
col[j][n] = row[i][n] = f[temp][n] = false;
if(flag) return;
}
}
board[i][j] = '.';
}
}
};

13-line Python solution, dfs, beats 47.79%

+1vote

77 views

def solveSudoku(self, board):
def dfs():
for i, row in enumerate(board):
for j, char in enumerate(row):
if char == '.':
for x in s9 - {row[k] for k in r9} - {board[k][j] for k in r9} - \
{board[i / 3 * 3 + m][j / 3 * 3 + n] for m in r3 for n in r3}:
board[i][j] = x
if dfs(): return True
board[i][j] = '.'
return False
return True r3, r9, s9 = range(3), range(9), {'1', '2', '3', '4', '5', '6', '7', '8', '9'}
dfs()

参考文献:

http://www.cnblogs.com/felixfang/p/3705754.html

leetcode 37. Sudoku Solver 36. Valid Sudoku 数独问题的更多相关文章

  1. LeetCode:36. Valid Sudoku,数独是否有效

    LeetCode:36. Valid Sudoku,数独是否有效 : 题目: LeetCode:36. Valid Sudoku 描述: Determine if a Sudoku is valid, ...

  2. 【LeetCode】36. Valid Sudoku 解题报告(Python)

    [LeetCode]36. Valid Sudoku 解题报告(Python) 作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址 ...

  3. [Leetcode][Python]36: Valid Sudoku

    # -*- coding: utf8 -*-'''__author__ = 'dabay.wang@gmail.com' 36: Valid Sudokuhttps://oj.leetcode.com ...

  4. [LeetCode] 36. Valid Sudoku 验证数独

    Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to th ...

  5. [leetcode]36. Valid Sudoku验证数独

    Determine if a 9x9 Sudoku board is valid. Only the filled cells need to be validated according to th ...

  6. leetCode 36.Valid Sudoku(有效的数独) 解题思路和方法

    Valid Sudoku Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku bo ...

  7. 【leetcode】36. Valid Sudoku(判断能否是合法的数独puzzle)

    Share Determine if a 9 x 9 Sudoku board is valid. Only the filled cells need to be validated accordi ...

  8. 【一天一道LeetCode】#36. Valid Sudoku

    一天一道LeetCode 本系列文章已全部上传至我的github,地址:https://github.com/Zeecoders/LeetCode 欢迎转载,转载请注明出处 (一)题目 Determi ...

  9. LeetCode 36 Valid Sudoku

    Problem: Determine if a Sudoku is valid, according to: Sudoku Puzzles - The Rules. The Sudoku board ...

随机推荐

  1. 【JZOJ4307】喝喝喝

    Description solution 正解:尺取法. 很容易想到尺取法,维护左右指针,\(a[i]\%a[j]==K\),当且仅当 \(a[j]>K\) 并且 \(a[i]-K\) 的约数中 ...

  2. hdu 5130(2014广州 圆与多边形相交模板)

    题意:一个很多个点p构成的多边形,pb <= pa * k时p所占区域与多边形相交面积 设p(x,y),       (x - xb)^2+(y - yb)^2 / (x - xa)^2+(y ...

  3. bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp

    2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1159  Solved: 593[Submit] ...

  4. QCA4028软件平台启用双WAN指导

    1 为何要启用双WAN QCA4028的硬件方案,基板上部署了一个LTE模块插槽,同时又外留了一个USB3.0接口,因此,就可以在此硬件平台上调试基于LTE的双WAN,预期实现: A 链路备份,在任意 ...

  5. VS2017+xamain开发安卓(Addroid)应用

    Visual Studio 2017下载地址: https://www.visualstudio.com/zh-hans/ 安卓模拟器官网下载:  https://www.visualstudio.c ...

  6. MySQL的常用操作命令详解

    系统管理">系统管理 mysql服务">启动MySQL服务 通过windows服务管理器启动MySQL服务 ? 1 开始-->运行-->输入services ...

  7. 8.QT-对话框(模态与非模态)

    对话框介绍 对话框是于用户进行简易交互的顶层窗口 QDialog是Qt中所有对话框窗口的父类,是一种容器类型的组件 QDialog继承于QWidget类,如下图所示: QWidget和QDialog有 ...

  8. 如何用Netty实现一个轻量级的HTTP代理服务器

    为什么会想通过Netty构建一个HTTP代理服务器?这也是笔者发表这篇文章的目的所在. 其主要还是源于解决在日常开发测试过程中,一直困扰测试同学很久的一个问题,现在我就来具体阐述一下这个问题. 在日常 ...

  9. URLDecoder: Illegal hex characters in escape (%) pattern - For input string

    原因:后台发布文章的时候,内容里面有%,导致后台URLDecoder.decode()转码的时候报错. 看了java.net.URLDecoder的decode()的源码,原来是转码错误. 贴出部分代 ...

  10. Lock锁子类了解一下

    前言 回顾前面: 多线程三分钟就可以入个门了! Thread源码剖析 多线程基础必要知识点!看了学习多线程事半功倍 Java锁机制了解一下 AQS简简单单过一遍 只有光头才能变强! 上一篇已经将Loc ...