还原本来的二叉树并不是一个非常简单的事,虽然思想比较简单,但过程却是比较繁琐。下面我拿先序序列和中序序列来讲一下原理吧。

从先序序列中我们一下子就可以得到二叉树的根节点是第一个元素,然后再中序序列中我们也可以找到这个元素(假设二叉树中所有的元素的值不相同)这样我们就可以把中序序列分成两部分,前部分和先序序列可求得左子树,后部分与先序序列可求得右子树。下面以左部分为例,在除去根节点的前序序列中的第二个元素,就是我们左子树的的第一个节点,然后继续在中序序列的前部分中找到相同的元素,再次对中序序列进行分割。····最后我们就可以得到恢复的二叉树了。

纯文字的讲述不太容易理解,下面我拿个具体的例子来分析吧。

比如

int[] preOrder = {7,10,4,3,1,2,8,11};  //前序序列
int[] inOrder = {4,10,3,1,7,11,8,2};  //中序序列

我们很容易在前序序列中得知7是根节点,接下来我们在中序序列中找到7所在的位置,那么此时4,10,3,1便是左子树对应的所有的节点。11,8,2是右子树所对应的所有的节点。

然后我们在前序序列中找到除根节点以外的第一个节点,那就是10,所以这就是左子树的第一个节点。然后我们在中序序列中找到10在第二个位置上,而10的左边有一个元素4,右边有3,1两个节点。这就说明4是节点10的左孩子节点,3,1为节点10的右子树上面的节点,然后再前序序列中我们便可以看出3是10的左孩子节点,而3的左边没有元素,说明3美誉哦左孩子节点,3的右边有一个元素1,说明3只有右孩子节点。至此,你是不是也掌握了恢复二叉树的方法了呢?

原理其实并不难理解,但是代码却不是特别好写。所以我拷贝了其他人做好的一份代码,大家一起欣赏一下吧。

package MyBinaryTree;

public class CreateBianryTreeByString {

        /**
         * Build Binary Tree from PreOrder and InOrder
         *  _______7______
           /              \
        __10__          ___2
       /      \        /
       4       3      _8
                \    /
                 1  11 

         */
        public static void main(String[] args) {
            CreateBianryTreeByString build=new CreateBianryTreeByString();
            int[] preOrder = {7,10,4,3,1,2,8,11};
            int[] inOrder = {4,10,3,1,7,11,8,2};  

            Node root=build.buildTreePreOrderInOrder(preOrder,0,preOrder.length-1,inOrder,0,preOrder.length-1);
            build.preOrder(root);
            System.out.println();
            build.inOrder(root);
        }  

        public Node buildTreePreOrderInOrder(int[] preOrder,int begin1,int end1,int[] inOrder,int begin2,int end2){
            if(begin1>end1||begin2>end2){
                return null;
            }
            int rootData=preOrder[begin1];
            Node head=new Node(rootData);
            int divider=findIndexInArray(inOrder,rootData,begin2,end2);
            int offSet=divider-begin2-1;
            Node left=buildTreePreOrderInOrder(preOrder,begin1+1,begin1+1+offSet,inOrder,begin2,begin2+offSet);
            Node right=buildTreePreOrderInOrder(preOrder,begin1+offSet+2,end1,inOrder,divider+1,end2);
            head.left=left;
            head.right=right;
            return head;
        }  

        public int findIndexInArray(int[] a,int x,int begin,int end){
            for(int i=begin;i<=end;i++){
                if(a[i]==x)return i;
            }
            return -1;
        }
        public void preOrder(Node n){
            if(n!=null){
                System.out.print(n.val+",");
                preOrder(n.left);
                preOrder(n.right);
            }
        }
        public void inOrder(Node n){
            if(n!=null){
                inOrder(n.left);
                System.out.print(n.val+",");
                inOrder(n.right);
            }
        }  

        class Node{
            Node left;
            Node right;
            int val;  

        public Node(int val){
            this.val=val;
        }
            public Node getLeft(){
                return left;
            }  

        public Node getRight(){
                return right;
            }  

        public int getVal(){
                return val;
            }  

        }
    }

测试结果:

7,10,4,3,1,2,8,11,//前序序列
4,10,3,1,7,11,8,2,//中序序列

Java由先序序列和中序序列还原二叉树的更多相关文章

  1. hdu1710-Binary Tree Traversals (由二叉树的先序序列和中序序列求后序序列)

    http://acm.hdu.edu.cn/showproblem.php?pid=1710 Binary Tree Traversals Time Limit: 1000/1000 MS (Java ...

  2. 48. leetcode 105题 由树的前序序列和中序序列构建树结构

    leetcode 105题,由树的前序序列和中序序列构建树结构.详细解答参考<剑指offer>page56. 先序遍历结果的第一个节点为根节点,在中序遍历结果中找到根节点的位置.然后就可以 ...

  3. 已知前序(后序)遍历序列和中序遍历序列构建二叉树(Leetcode相关题目)

    1.文字描述: 已知一颗二叉树的前序(后序)遍历序列和中序遍历序列,如何构建这棵二叉树? 以前序为例子: 前序遍历序列:ABCDEF 中序遍历序列:CBDAEF 前序遍历先访问根节点,因此前序遍历序列 ...

  4. L2-006 树的遍历 (25 分) (根据后序遍历与中序遍历建二叉树)

    题目链接:https://pintia.cn/problem-sets/994805046380707840/problems/994805069361299456 L2-006 树的遍历 (25 分 ...

  5. 玩透二叉树(Binary-Tree)及前序(先序)、中序、后序【递归和非递归】遍历

    基础预热: 结点的度(Degree):结点的子树个数:树的度:树的所有结点中最大的度数:叶结点(Leaf):度为0的结点:父结点(Parent):有子树的结点是其子树的根节点的父结点:子结点/孩子结点 ...

  6. python数据结构之树和二叉树(先序遍历、中序遍历和后序遍历)

    python数据结构之树和二叉树(先序遍历.中序遍历和后序遍历) 树 树是\(n\)(\(n\ge 0\))个结点的有限集.在任意一棵非空树中,有且只有一个根结点. 二叉树是有限个元素的集合,该集合或 ...

  7. c/c++ 用前序和中序,或者中序和后序,创建二叉树

    c/c++ 用前序和中序,或者中序和后序,创建二叉树 用前序和中序创建二叉树 //用没有结束标记的char*, clr为前序,lcr为中序来创建树 //前序的第一个字符一定是root节点,然后去中序字 ...

  8. 03-树3. Tree Traversals Again (25)将先序遍历和中序遍历转为后序遍历

    03-树3. Tree Traversals Again (25) 题目来源:http://www.patest.cn/contests/mooc-ds/03-%E6%A0%913 An inorde ...

  9. 小小c#算法题 - 11 - 二叉树的构造及先序遍历、中序遍历、后序遍历

    在上一篇文章 小小c#算法题 - 10 - 求树的深度中,用到了树的数据结构,树型结构是一类重要的非线性数据结构,树是以分支关系定义的层次结构,是n(n>=0)个结点的有限集.但在那篇文章中,只 ...

随机推荐

  1. FastDFS+Nginx安装配置

    下载相关包: libevent-2.0.22-stable.tar.gz => https://github.com/libevent/libevent/releases/download/re ...

  2. 嫌我的键盘的backspace太小,就尝试了一下改键工具--keyTweak

    KeyTweak是一个很简单的键盘remap小工具,主要功能就是可以让我们选择某个按键并重新赋予该按键一个新的功能.如果哪天你的键盘某个重要的键坏掉了,可以通过这个免费的软件来重新定义该按键的功能.譬 ...

  3. Linux 新系统个人配置

    1,装codeblocks 2,装vim,检查gcc,g++,修改vim环境 cd ~vim  .vimrc添加如下几行:set shiftwidth=4          (表示每一级缩进的长度)s ...

  4. 给定 n×n 的实数矩阵,每行和每列都是递增的,求这 n^2 个数的中位数。

    #define COL 4 #define ROW 4 int findMedian(int matrix[][COL], int row, int col) { int* arr = new int ...

  5. CentOS7下安装GitLab

    三步在CentOS7系统下,完成GitLab的安装. 1.安装和配置必须的依赖 sudo yum install curl policycoreutils openssh-server openssh ...

  6. dubbo安装

    dubbo 管控台可以对注册到 zookeeper 注册中心的服务或服务消费者进行管理,分享牛系列,分享牛专栏,分享牛.但管控台是否正常对 Dubbo 服务没有影响,管控台也不需要高可用,因此可以单节 ...

  7. PHP 针对多用户 实现头像更换

    成品图 思路 登陆页面 表单制作 验证码制作 JavaScript刷新验证码 验证页面 验证逻辑 页面跳转 header函数 Meta标签 JavaScript 上传页面 个人主页 上传核心 最终结果 ...

  8. scheme深拷贝和浅拷贝探索

    > (define a '(1 2 3)) > (define b (cons a '())) > b (( )) > (set-car! (car b) ) > b ( ...

  9. EXCEL技能之数据去重

    本篇不属于技术类博文,只是想找个地方记录而已,既然是我的博客嘛,那就自己想写什么就写什么了. CRM中有个EXCEL数据导入功能,几千条数据导入CRM后去重,那是死的心都有的.往回想想EXCEL是否有 ...

  10. python+OpenCV 特征点检测

    1.Harris角点检测 Harris角点检测算法是一个极为简单的角点检测算法,该算法在1988年就被发明了,算法的主要思想是如果像素周围显示存在多于一个方向的边,我们认为该点为兴趣点.基本原理是根据 ...