Description

题库链接

求 \(2\times N\) 个点的带权二分图最佳匹配。

\(1\leq N\leq 20\)

Solution

我还是太菜了啊...到现在才学 \(KM\) 。

Code

//It is made by Awson on 2018.3.8
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 20, INF = ~0u>>1;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, a[N+5][N+5], x;
int vis1[N+5], vis2[N+5], E1[N+5], E2[N+5], sla[N+5], match[N+5]; bool dfs(int u) {
vis1[u] = 1;
for (int i = 1; i <= n; i++)
if (vis2[i] == 0) {
int tmp = E1[u]+E2[i]-a[u][i];
if (tmp == 0) {
vis2[i] = 1;
if (match[i] == 0 || dfs(match[i])) {
match[i] = u; return true;
}
}else sla[i] = Min(sla[i], tmp);
}
return false;
}
int KM() {
for (int i = 1; i <= n; i++) {
E1[i] = E2[i] = match[i] = 0;
for (int j = 1; j <= n; j++) E1[i] = Max(E1[i], a[i][j]);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) sla[j] = INF;
while (1) {
for (int j = 1; j <= n; j++) vis1[j] = vis2[j] = 0;
if (dfs(i)) break;
int tmp = INF;
for (int j = 1; j <= n; j++) if (vis2[j] == 0) tmp = Min(tmp, sla[j]);
for (int j = 1; j <= n; j++) {
if (vis1[j]) E1[j] -= tmp;
if (vis2[j]) E2[j] += tmp; else sla[j] -= tmp;
}
}
}
int ans = 0;
for (int i = 1; i <= n; i++) ans += a[match[i]][i];
return ans;
}
void work() {
read(n);
for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) read(a[i][j]);
for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) read(x), a[j][i] *= x;
writeln(KM());
}
int main() {
work(); return 0;
}

[Luogu 1559]运动员最佳匹配问题的更多相关文章

  1. Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)

    Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...

  2. KM模板 最大权匹配(广搜版) Luogu P1559 运动员最佳匹配问题

    KM板题: #include <bits/stdc++.h> using namespace std; inline void read(int &num) { char ch; ...

  3. [洛谷 P1559] 运动员最佳匹配问题

    题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...

  4. 运动员最佳匹配问题 KM算法:带权二分图匹配

    题面: 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势. ...

  5. P1559 运动员最佳匹配问题[最大费用最大流]

    题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...

  6. 【题解】P1559 运动员最佳匹配问题

    [题目](https://www.luogu.com.cn/problem/P1559) 题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组 ...

  7. P1559 运动员最佳匹配问题

    题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...

  8. 洛谷p1559运动员最佳匹配问题

    题目 搜索 可行性剪枝 虽然这题目是我搜二分图的标签搜到的 但是n比较小 明显可以暴力 然而只有80分 再加上可行性剪纸就行啦 就是记所有运动员他所能匹配到的最大值. 在我们搜索到第i层的时候 如果他 ...

  9. 运动员最佳匹配问题(km算法)

    洛谷传送门 带权二分图最大权完美匹配. 裸的km算法. 注意开long long. #include <cstdio> #include <cstring> #include ...

随机推荐

  1. JS页面跳转的常用方法整理.

    <script type="text/javascript"> //js页面跳转 function showtabs() { window.location.href ...

  2. 第一章 jQuery基础

    第一章jQuery基础 一.jQuert简介 1.什么是jQuery jQuery是javaScript的程序库之一,它是javaScript对象和实用函数的封装. jQuery是继Prototype ...

  3. Python内置函数(45)——ascii

    英文文档: ascii(object) As repr(), return a string containing a printable representation of an object, b ...

  4. C语言学习之弹跳小球

    重新回过头来看了一遍C语言,才发现我自己的无知,C语言其实好强大,我之前学的不过是一点C语法和做几个数学题.正好3月份的考试要考C语言,重新学一遍,先是在中国大学mooc上把翁恺老师的C语言刷了一遍, ...

  5. js实现图片(高度不确定)懒加载

    最近一直在弄广告页,由于广告页几乎都是图片拼凑起来的,为了减少服务器压力和带宽,采用图片懒加载方式,但是我们的图片高度又不确定,所以我在网上下载了echo.js自己改了一下. 大体思路是:让首页先加载 ...

  6. jquery实现对div的拖拽功能

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  7. mqtt paho ssl java端代码

    参考链接:http://blog.csdn.net/lingshi210/article/details/52439050 mqtt 的ssl配置可以参阅 http://houjixin.blog.1 ...

  8. Linux知识积累(1)awk的使用方法

    参见:http://www.cnblogs.com/ggjucheng/archive/2013/01/13/2858470.html 简介 awk是一个强大的文本分析工具,相对于grep的查找,se ...

  9. 发布到NPMJS

    最近在做微服务的前后端设计,打算将客户端中的一个模块独立出来发布到npmjs上,因此,有机会了解了一下npm的发布过程. 参考了很多网上的文章,长篇累牍(但在这里还是真心感谢他们的分享),最终总结成一 ...

  10. centos7搭建nexus maven私服(二)

    本文主要补充两个主题: 1.手动更新索引 2.通过maven客户端发布本地jar包到nexus 先说第一个主题: 由于maven中央仓库汇集了全世界绝大多数的组件,所以它的索引库非常庞大,在我们右击仓 ...