Description

题库链接

求 \(2\times N\) 个点的带权二分图最佳匹配。

\(1\leq N\leq 20\)

Solution

我还是太菜了啊...到现在才学 \(KM\) 。

Code

//It is made by Awson on 2018.3.8
#include <bits/stdc++.h>
#define LL long long
#define dob complex<double>
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = 20, INF = ~0u>>1;
void read(int &x) {
char ch; bool flag = 0;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || 1); ch = getchar());
for (x = 0; isdigit(ch); x = (x<<1)+(x<<3)+ch-48, ch = getchar());
x *= 1-2*flag;
}
void print(int x) {if (x > 9) print(x/10); putchar(x%10+48); }
void write(int x) {if (x < 0) putchar('-'); print(Abs(x)); } int n, a[N+5][N+5], x;
int vis1[N+5], vis2[N+5], E1[N+5], E2[N+5], sla[N+5], match[N+5]; bool dfs(int u) {
vis1[u] = 1;
for (int i = 1; i <= n; i++)
if (vis2[i] == 0) {
int tmp = E1[u]+E2[i]-a[u][i];
if (tmp == 0) {
vis2[i] = 1;
if (match[i] == 0 || dfs(match[i])) {
match[i] = u; return true;
}
}else sla[i] = Min(sla[i], tmp);
}
return false;
}
int KM() {
for (int i = 1; i <= n; i++) {
E1[i] = E2[i] = match[i] = 0;
for (int j = 1; j <= n; j++) E1[i] = Max(E1[i], a[i][j]);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) sla[j] = INF;
while (1) {
for (int j = 1; j <= n; j++) vis1[j] = vis2[j] = 0;
if (dfs(i)) break;
int tmp = INF;
for (int j = 1; j <= n; j++) if (vis2[j] == 0) tmp = Min(tmp, sla[j]);
for (int j = 1; j <= n; j++) {
if (vis1[j]) E1[j] -= tmp;
if (vis2[j]) E2[j] += tmp; else sla[j] -= tmp;
}
}
}
int ans = 0;
for (int i = 1; i <= n; i++) ans += a[match[i]][i];
return ans;
}
void work() {
read(n);
for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) read(a[i][j]);
for (int i = 1; i <= n; i++) for (int j = 1; j <= n; j++) read(x), a[j][i] *= x;
writeln(KM());
}
int main() {
work(); return 0;
}

[Luogu 1559]运动员最佳匹配问题的更多相关文章

  1. Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配)

    Luogu 1559 运动员最佳匹配问题(带权二分图最大匹配) Description 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的 ...

  2. KM模板 最大权匹配(广搜版) Luogu P1559 运动员最佳匹配问题

    KM板题: #include <bits/stdc++.h> using namespace std; inline void read(int &num) { char ch; ...

  3. [洛谷 P1559] 运动员最佳匹配问题

    题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...

  4. 运动员最佳匹配问题 KM算法:带权二分图匹配

    题面: 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势. ...

  5. P1559 运动员最佳匹配问题[最大费用最大流]

    题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...

  6. 【题解】P1559 运动员最佳匹配问题

    [题目](https://www.luogu.com.cn/problem/P1559) 题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组 ...

  7. P1559 运动员最佳匹配问题

    题目描述 羽毛球队有男女运动员各n人.给定2 个n×n矩阵P和Q.P[i][j]是男运动员i和女运动员j配对组成混合双打的男运动员竞赛优势:Q[i][j]是女运动员i和男运动员j配合的女运动员竞赛优势 ...

  8. 洛谷p1559运动员最佳匹配问题

    题目 搜索 可行性剪枝 虽然这题目是我搜二分图的标签搜到的 但是n比较小 明显可以暴力 然而只有80分 再加上可行性剪纸就行啦 就是记所有运动员他所能匹配到的最大值. 在我们搜索到第i层的时候 如果他 ...

  9. 运动员最佳匹配问题(km算法)

    洛谷传送门 带权二分图最大权完美匹配. 裸的km算法. 注意开long long. #include <cstdio> #include <cstring> #include ...

随机推荐

  1. p-value

    p-value p-value翻译为假定值,假设几率.我们在生物信息中通常使用p值方法(P-Value, Probability, Pr)来做检验.那么p-value是什么呢?其实P-value就是一 ...

  2. 冲刺NO.10

    Alpha冲刺第十天 站立式会议 项目进展 项目核心功能逐步构建完成,测试工作也已开始.主要对部分功能组合进行测试以测试系统可用性. 问题困难 项目的主要困难在这个时间点主要存在于测试工作中,测试工作 ...

  3. 201621123031 《Java程序设计》第5周学习总结

    作业05-继承.多态.抽象类与接口 1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:接口.继承.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需 ...

  4. js:防抖动与节流

    http://blog.csdn.net/crystal6918/article/details/62236730

  5. Windows Server2012 故障转移集群之动态仲裁(Dynamic Quorum)

    本篇文章主要介绍Windows2012的故障转移集群一个新功能“动态仲裁”,默认该功能是开启的: 动态仲裁能在当前群集投票出现分歧的情况下取消某些节点的投票权限,比如偶数个节点的群集环境.仲裁见证和动 ...

  6. 一、Django的基本用法

    学习Django有一段时间了,整理一下,充当笔记. MVC 大部分开发语言中都有MVC框架 MVC框架的核心思想是:解耦 降低各功能模块之间的耦合性,方便变更,更容易重构代码,最大程度上实现代码的重用 ...

  7. JAVA_SE基础——50.接口关系下的多态

    接口关系下的多态和继承关系下的多态 相差无几,应该更简单些~ 多态: 父类的引用类型变量指向了子类的对象或者是接口类型的引用类型变量指向了接口实现类 的对象. 实现关系下的多态: 接口  变量  = ...

  8. JAVA_SE基础——13.选择结构语句

    if选择结构 语法: if(条件){ 代码块 } public class Test{ public static void main(String[] args){ int a = 5; if(a ...

  9. 使用jQuery获取session中存储的list集合

    在网上查找了很多关于jQuery获取session都不可得,如果大家有更好的方式,欢迎留言 这里是使用jQuery发送Ajax请求到后台获取session jsp中没有代码 js代码 <scri ...

  10. 赛码网算法: 上台阶 ( python3实现 、c实现)

    上台阶 题目描述 有一楼梯共m级,刚开始时你在第一级,若每次只能跨上一级或二级,要走上第m级,共有多少走法?注:规定从一级到一级有0种走法. 输入输入数据首先包含一个整数n(1<=n<=1 ...