【DataMagic】如何在万亿级别规模的数据量上使用Spark
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~
本文首发在云+社区,未经许可,不得转载。
作者:张国鹏 | 腾讯 运营开发工程师
一、前言
Spark作为大数据计算引擎,凭借其快速、稳定、简易等特点,快速的占领了大数据计算的领域。本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路。文章内容为介绍Spark在DataMagic平台扮演的角色、如何快速掌握Spark以及DataMagic平台是如何使用好Spark的。
二、Spark在DataMagic平台中的角色
整套架构的主要功能为日志接入、查询(实时和离线)、计算。离线计算平台主要负责计算这一部分,系统的存储用的是COS(公司内部存储),而非HDFS。
下面将主要介绍Spark on Yarn这一架构,抽取出来即图2-2所示,可以看到Spark on yarn的运行流程。
三、如何快速掌握Spark
对于理解Spark,我觉得掌握下面4个步骤就可以了。
1.理解Spark术语
对于入门,学习Spark可以通过其架构图,快速了解其关键术语,掌握了关键术语,对Spark基本上就有认识了,分别是结构术语Shuffle、Patitions、MapReduce、Driver、Application Master、Container、Resource Manager、Node Manager等。API编程术语关键RDD、DataFrame,结构术语用于了解其运行原理,API术语用于使用过程中编写代码,掌握了这些术语以及背后的知识,你就也知道Spark的运行原理和如何编程了。
2.掌握关键配置
Spark在运行的时候,很多运行信息是通过配置文件读取的,一般在spark-defaults.conf,要把Spark使用好,需要掌握一些关键配置,例如跟运行内存相关的,spark.yarn.executor.memoryOverhead、spark.executor.memory,跟超时相关的spark.network.timeout等等,Spark很多信息都可以通过配置进行更改,因此对于配置需要有一定的掌握。但是使用配置时,也要根据不同的场景,这个举个例子,例如spark.speculation配置,这个配置主要目的是推测执行,当worker1执行慢的情况下,Spark会启动一个worker2,跟worker1执行相同的任务,谁先执行完就用谁的结果,从而加快计算速度,这个特性在一般计算任务来说是非常好的,但是如果是执行一个出库到Mysql的任务时,同时有两个一样的worker,则会导致Mysql的数据重复。因此我们在使用配置时,一定要理解清楚,直接google spark conf就会列出很多配置了。
3.使用好Spark的并行
我们之所以使用Spark进行计算,原因就是因为它计算快,但是它快的原因很大在于它的并行度,掌握Spark是如何提供并行服务的,从而是我们更好的提高并行度。
对于提高并行度,对于RDD,需要从几个方面入手,1、配置num-executor。2、配置executor-cores。3、配置spark.default.parallelism。三者之间的关系一般为spark.default.parallelism=num-executors*executor-cores的2~3倍较为合适。对于Spark-sql,则设置spark.sql.shuffle.partitions、num-executor和executor-cores。
4.学会如何修改Spark代码
新手而言,特别是需要对Spark进行优化或者修改时,感到很迷茫,其实我们可以首先聚焦于局部,而Spark确实也是模块化的,不需要觉得Spark复杂并且难以理解,我将从修改Spark代码的某一角度来进行分析。
首先,Spark的目录结构如图3-1所示,可以通过文件夹,快速知道sql、graphx等代码所在位置,而Spark的运行环境主要由jar包支撑,如图3-2所示,这里截取部分jar包,实际上远比这多,所有的jar包都可以通过Spark的源代码进行编译,当需要修改某个功能时,仅需要找到相应jar包的代码,修改之后,编译该jar包,然后进行替换就行了。
而对于编译源代码这块,其实也非常简单,安装好maven、scala等相关依赖,下载源代码进行编译即可,掌握修改源码技巧对于使用好开源项目十分重要。
四、DataMagic平台中的Spark
Spark在DataMagic中使用,也是在边使用边探索的过程,在这过程中,列举了其比较重要的特点。
1.快速部署
在计算中,计算任务的数量以及数据的量级每天都会发生变化,因此对于Spark平台,需要有快速部署的特性,在实体机上,有一键部署脚本,只要运行一个脚本,则可以马上上线一个拥有128G内存、48cores的实体机,但是实体机通常需要申请报备才能获得,因此还会有docker来支持计算资源。
2.巧用配置优化计算
Spark大多数属性都是通过配置来实现的,因此可以通过配置动态修改Spark的运行行为,这里举个例子,例如通过配置自动调整exector的数量。
2.1 在nodeManager的yarn-site.xml添加配置
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle,spark_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
<value>org.apache.spark.network.yarn.YarnShuffleService</value>
</property>
2.2 将spark-2.2.0-yarn-shuffle.jar文件拷贝到hadoop-yarn/lib目录下(即yarn的库目录)
2.3 在Spark的spark-default.xml添加配置
spark.dynamicAllocation.minExecutors #最小Executor数
spark.dynamicAllocation.maxExecutors #最大Executor数
通过这种配置,可以达到自动调整exector的目的。
3.合理分配资源
作为一个平台,其计算任务肯定不是固定的,有的数据量多,有的数据量少,因此需要合理分配资源,例如有些千万、亿级别的数据,分配20核计算资源就足够了。但是有些数据量级达到百亿的,就需要分配更多的计算资源了。参考第三章节的第3点。
4.贴合业务需求
计算的目的其实就是为了服务业务,业务的需求也理应是平台的追求,当业务产生合理需求时,平台方也应该尽量去满足。如为了支持业务高并发、高实时性查询的需求下,Spark在数据出库方式上,支持了Cmongo的出库方式。
sc = SparkContext(conf=conf) sqlContext = SQLContext(sc) database = d = dict((l.split('=') for l in dbparameter.split())) parquetFile = sqlContext.read.parquet(file_name) parquetFile.registerTempTable(tempTable) result = sqlContext.sql(sparksql) url = "mongodb://"+database['user']+":"+database['password']+"@"+database['host']+":"+database['port'] result.write.format("com.mongodb.spark.sql").mode('overwrite').options(uri=url,database=database['dbname'],collection=pg_table_name).save()
5.适用场景
6.Job问题定位
Spark在计算任务失败时候,需要去定位失败原因,当Job失败是,可以通过yarn logs -applicationId application 来合并任务log,打开log,定位到Traceback,一般可以找到失败原因。一般而言,失败可以分成几类。
a. 代码问题,写的Sql有语法问题,或者Spark代码有问题。
b. Spark问题,旧Spark版本处理NULL值等。
c. 任务长时间Running状态,则可能是数据倾斜问题。
d. 任务内存越界问题。
7.集群管理
Spark集群在日常使用中,也是需要运营维护的,从而运营维护,发现其存在的问题,不断的对集群进行优化,这里从以下几个方面进行介绍,通过运营手段来保障集群的健壮性和稳定性,保证任务顺利执行。
a. 定时查看是否有lost node和unhealthy node,可以通过脚本来定时设置告警,若存在,则需要进行定位处理。
b. 定时扫描hdfs的运行log是否满了,需要定时删除过期log。
c. 定时扫描集群资源是否满足计算任务使用,能够提前部署资源。
五、总结
本文主要是通过作者在搭建使用计算平台的过程中,写出对于Spark的理解,并且介绍了Spark在当前的DataMagic是如何使用的,当前平台已经用于架平离线分析,每天计算分析的数据量已经达到千亿~万亿级别。
问答
相关阅读
此文已由作者授权腾讯云+社区发布,原文链接:https://cloud.tencent.com/developer/article/1092587?fromSource=waitui
【DataMagic】如何在万亿级别规模的数据量上使用Spark的更多相关文章
- 如何在万亿级别规模的数据量上使用Spark
一.前言 Spark作为大数据计算引擎,凭借其快速.稳定.简易等特点,快速的占领了大数据计算的领域.本文主要为作者在搭建使用计算平台的过程中,对于Spark的理解,希望能给读者一些学习的思路.文章内容 ...
- 替代或者与 Redis 配合存储十亿级别列表的数据.
http://ssdb.io/docs/zh_cn/index.html 用户案例 如果你在生产环境中使用 SSDB, 欢迎你给我发邮件(ssdb#udpwork.com), 我很愿意把你加入到下面的 ...
- 横瓜先生关于如何利用MYSQL数据库设计CMS系统处理100亿级TB规模的数据量
遥执乾坤(44758121) 18:21:23 mysql据说只能使用一个索引,我这里几乎所有字段都有索引. 但每个字段就算用索引,也需要扫描至少100w以上记录. 横瓜(601069289) 1 ...
- Oracle数据库--解决单张表中数据量巨大(大数据、数据量上百万级别,后查询,更新数据等耗时剧增)
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/QQ578473688/article/details/54561397 思路1:采用备份表 备份表中 ...
- 口护万亿市场杀出的实力派 Oclean欧可林
撰文 |懂懂 编辑 | 秦言 来源:懂懂笔记 在"青年必去的电影节"上,发现了一个跟他们打成一片的智能护齿"新星". 25日,备受关注的第15届FIRST青年电 ...
- 微信支付万亿日志在Hermes中的实践
导语 | 微信支付日志系统利用 Hermes 来实现日志的全文检索功能,自从接入以来,日志量持续增长.目前单日入库日志量已经突破万亿级,单集群日入库规模也已经突破了万亿,存储规模达 PB 级.本文将介 ...
- Kafka万亿级消息实战
一.Kafka应用 本文主要总结当Kafka集群流量达到 万亿级记录/天或者十万亿级记录/天 甚至更高后,我们需要具备哪些能力才能保障集群高可用.高可靠.高性能.高吞吐.安全的运行. 这里总结内容主 ...
- [原创]PostgreSQL Plus Advanced Server批量创建分区表写入亿级别数据实例
当前情况:大表的数据量已接近2亿条我的解决思路:为它创建n*100个分区表,将各个分区表放在不同的tablespace上这样做的优点:1.首先是对这个级别的数据表的性能会有所提升2.数据管理更科学3. ...
- 日调度万亿次,微服务框架TSF大规模应用——云+未来峰会开发者专场回顾
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 演讲者:张浩 腾讯云中间件产品负责人 背景:众多开发者中,一定经历类似的甜蜜烦恼,就是当线上业务规模越来越大,系统分支发展越来越多的时候,初 ...
随机推荐
- android中与SQLite数据库相关的类
为什么要在应用程序中使用数据库?数据库最主要的用途就是作为数据的存储容器,另外,由于可以很方便的将应用程序中的数据结构(比如C语言中的结构体)转化成数据库的表,这样我们就可以通过操作数据库来替代写一堆 ...
- 微信公众平台开发,图文回复、access_token生成调用、以及微信SDK的实现(2)
上一节课,我给大家分享了微信API接入以及事件推送的回复,这是微信开发的第二节课,重点给说一说单图文回复,多图文回复,access_token,微信SDK. 公众号消息回复很多种形式,常见的形式有,文 ...
- java中使用ReentrantLock锁中的Condition实现三个线程之间通信,交替输出信息
本文直接附上源代码,如下是自己写的一个例子 面试题需求: 使用Condition来实现 三个线程 线程1 线程2 线程3 三个交替输出 [按照 线程1(main)-->线程2-->线程3] ...
- 结合Socket实现DDoS攻击
一.实验说明 1. 实验介绍 通过上一节实验的SYN泛洪攻击结合Socket实现DDoS攻击. 2. 开发环境 Ubuntu Linux Python 3.x版本 3. 知识点 本次实验将涉及以下知识 ...
- tableView//collectionView加载时的动画
- (UICollectionViewCell *)collectionView:(UICollectionView *)collectionView cellForItemAtIndexPath:( ...
- Spring事务注意点
service中未带事务的方法调用了自身带事务的方法时,按下面写法数据是提交不了的. public String getMaxSystemVersionNo() { SystemVersion ver ...
- 数据结构与算法 —— 链表linked list(01)
链表(维基百科) 链表(Linked list)是一种常见的基础数据结构,是一种线性表,但是并不会按线性的顺序存储数据,而是在每一个节点里存到下一个节点的指针(Pointer).由于不必须按顺序存储, ...
- Entity Framework Core Code First
参考地址:https://docs.microsoft.com/zh-cn/ef/core/get-started/aspnetcore/new-db
- JAVA_SE基础——9.基本数据类型间的转换
前面我已经教会大家基本的数据类型进行了介绍, 然后这篇文章,我来介绍下,基本数据类型的转换. Java中有两种类型转换形式,分别是自动类型转换和强制类型转换. Step1.自动类型转换. 自动类型 ...
- VMware虚拟机,从厚置备改成精简置备,并减小硬盘的实际占用空间
工作中由于前期规划不足,导致磁盘空间分配较大,而且是厚置备.后期不再需要时,无法把用不到的空间释放出来,造成空间浪费.经过摸索和实验验证,总结出来一套方法. 风险提示:这个方法在我的环境中验证通过了, ...