【UNR #1】火车管理(主席树)

好好的代码被 \(extra\ test\) 卡常了。。。我就放一个目前最快的版本吧。。。

题意简化:

有 \(n\) 个栈,\(m\) 次操作。

  • 将 \(x\) 压入 \([l,r]\) 的栈中

  • 将 \(l\) 的栈顶弹出

  • 询问 \([l,r]\) 栈顶的和

\(n,m\leq 5\times 10^5\)

虽然最优解是神仙二叉树,我只会主席树的解法。。。

显然 \(1,3\) 操作用一棵线段树就够了,\(2\) 操作需要另外一棵主席树,并且在历史版本上修改。

\(Code\ Below:\)

#include <bits/stdc++.h>
using namespace std;
const int maxn=500000+10;
int n,m,k,a[maxn]; namespace IO{
#define gc() (iS==iT?(iT=(iS=ibuff)+fread(ibuff,1,SIZ,stdin),(iS==iT?EOF:*iS++)):*iS++)
const int SIZ=1<<21|1;
char *iS,*iT,ibuff[SIZ],obuff[SIZ],*oS=obuff,*oT=oS+SIZ-1,fu[110],c;int fr;
inline void out(){
fwrite(obuff,1,oS-obuff,stdout);
oS=obuff;
}
template <class T>
inline void read(T &x){
x=0;T y=1;
for(c=gc();(c>'9'||c<'0')&&c!='-';c=gc());
c=='-'?y=-1:x=(c&15);
for(c=gc();c>='0'&&c<='9';c=gc()) x=x*10+(c&15);
x*=y;
}
template <class T>
inline void print(T x,char text='\n'){
if(x<0) *oS++='-',x*=-1;
if(x==0) *oS++='0';
while(x) fu[++fr]=x%10+'0',x/=10;
while(fr) *oS++=fu[fr--];
*oS++=text;out();
}
} struct President_Tree{
#define rt(x) PT.rt[x]
struct node{
int sum,lazy,ls,rs;
}t[maxn*80];
int rt[maxn],cnt;
inline void pushdown(int x){
if(t[x].lazy){
if(!t[x].ls) t[x].ls=++cnt;
if(!t[x].rs) t[x].rs=++cnt;
t[t[x].ls].sum=t[t[x].rs].sum=t[t[x].ls].lazy=t[t[x].rs].lazy=t[x].lazy;
t[x].lazy=0;
}
}
inline void update(int &x,int y,int L,int R,int C,int l,int r){
x=++cnt;
if(L <= l && r <= R){t[x].sum=t[x].lazy=C;return;}
pushdown(y);t[x].ls=t[y].ls;t[x].rs=t[y].rs;
int mid=(l+r)>>1;
if(L <= mid) update(t[x].ls,t[y].ls,L,R,C,l,mid);
if(R > mid) update(t[x].rs,t[y].rs,L,R,C,mid+1,r);
}
inline int query(int x,int l,int r,int k){
if(l == r) return t[x].sum;
pushdown(x);
int mid=(l+r)>>1;
if(k <= mid) return query(t[x].ls,l,mid,k);
else return query(t[x].rs,mid+1,r,k);
}
}PT; struct Segment_Tree{
#define lson (rt<<1)
#define rson (rt<<1|1)
int sum[maxn<<2],lazy[maxn<<2];
inline void pushup(int rt){sum[rt]=sum[lson]+sum[rson];}
inline void pushdown(int rt,int len){
if(lazy[rt]){
sum[lson]=(len-(len>>1))*lazy[rt];
sum[rson]=(len>>1)*lazy[rt];
lazy[lson]=lazy[rson]=lazy[rt];
lazy[rt]=0;
}
}
inline void update(int L,int R,int C,int l,int r,int rt){
if(L <= l && r <= R){
sum[rt]=(r-l+1)*C;lazy[rt]=C;
return ;
}
pushdown(rt,r-l+1);
int mid=(l+r)>>1;
if(L <= mid) update(L,R,C,l,mid,lson);
if(R > mid) update(L,R,C,mid+1,r,rson);
pushup(rt);
}
inline int query(int L,int R,int l,int r,int rt){
if(L <= l && r <= R) return sum[rt];
pushdown(rt,r-l+1);
int mid=(l+r)>>1,ans=0;
if(L <= mid) ans+=query(L,R,l,mid,lson);
if(R > mid) ans+=query(L,R,mid+1,r,rson);
return ans;
}
}ST; int main()
{
IO::read(n),IO::read(m),IO::read(k);
int op,l,r,x,y,lastans=0;
for(int i=1;i<=n;i++){
rt(i)=rt(i-1);
IO::read(op);
if(op==1){
IO::read(l),IO::read(r);
l=(l+k*lastans)%n+1;
r=(r+k*lastans)%n+1;
if(l>r) swap(l,r);
IO::print(lastans=ST.query(l,r,1,n,1));
}
if(op==2){
IO::read(l);
l=(l+k*lastans)%n+1;
x=PT.query(rt(i),1,n,l);
if(x){
y=PT.query(rt(x-1),1,n,l);
PT.update(rt(i),rt(i),l,l,y,1,n);
ST.update(l,l,a[y],1,n,1);
}
}
if(op==3){
IO::read(l),IO::read(r);
l=(l+k*lastans)%n+1;
r=(r+k*lastans)%n+1;
if(l>r) swap(l,r);
IO::read(x);a[i]=x;
PT.update(rt(i),rt(i),l,r,i,1,n);
ST.update(l,r,x,1,n,1);
}
}
return 0;
}

【UNR #1】火车管理(主席树)的更多相关文章

  1. UOJ#218. 【UNR #1】火车管理 线段树 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...

  2. UNR #1 火车管理

    很简单 用一个线段树维护 1.答案 2.当前栈顶是什么时候push进来的 然后用一棵以时间为版本的可持久化线段树维护每个操作之后第一个覆盖到他的操作是哪个 就可以了 询问直接在线段树上询问,修改在两棵 ...

  3. 【UNR #1】火车管理

    题目描述 uoj 旗下有一个火车站,用来管理属于 uoj 的小火车. 火车站一共有 nn 条编号为 1,…,n1,…,n 的,只有一端的用来存放小火车的铁路,由于小火车特殊的构造,每条铁路可以停放无数 ...

  4. UOJ #218. 【UNR #1】火车管理

    Description Solution 实际上添加问题就是一个线段树区间覆盖问题,打标记就好 对于弹栈操作比较难搞,实际上也就是一个历史查询,我们不需要保存栈中的每一个元素,我们通过查找历史状态就可 ...

  5. [bzoj3932][CQOI2015][任务查询系统] (主席树)

    Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...

  6. POJ 2104&HDU 2665 Kth number(主席树入门+离散化)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 50247   Accepted: 17101 Ca ...

  7. bzoj 3932 [CQOI2015]任务查询系统(主席树)

    Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分. 超级计算机中的任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...

  8. UOJ 218 火车管理

    http://uoj.ac/problem/218 思路:建立一个可持久化线段树,代表这个位置的火车是哪辆,然后再弄一个线段树维护答案. 如果询问,直接询问线段树. 如果区间压入,直接在主席树上面压入 ...

  9. 【BZOJ3932】任务查询系统(主席树)

    [BZOJ3923]任务查询系统(主席树) 题面 Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei ...

随机推荐

  1. 尚硅谷springboot学习25-嵌入式Servlet容器

    SpringBoot默认使用Tomcat作为嵌入式的Servlet容器:

  2. zabbix安装脚本

    #!/bin/bash # #安装zabbix源.aliyun YUM源 #curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyu ...

  3. js方法用来获取路径传参上所带的参数

    //js方法用来获取路径传参上所带的参数 function GetQueryString(param) { var reg = new RegExp("(^|&)" + p ...

  4. nginx_server_location对客户资源的辨别规则

    语法:location [ = | ~ | ~* | ^~ ] uri { …一组命令… } http://nginx.org/en/docs/http/ngx_http_core_module.ht ...

  5. oracle 执行顺序 select查询优化

    今天把这几天做的练习复习了一下,不知道自己写得代码执行的效率如何以及要如何提高,于是乎上网开始研究一些材料,现整理如下: 首先,要了解在Oracle中Sql语句运行的机制.以下是sql语句的执行步骤: ...

  6. 算法练习LeetCode初级算法之链表

    删除链表中的节点 /** * Definition for singly-linked list. * public class ListNode { * int val; * ListNode ne ...

  7. Percentage&Last zero&Convert from char to float

    Percentage g_rate = wg_header-rate. condense g_rate. SHIFT g_rate RIGHT DELETING TRAILING '0'. REPLA ...

  8. [leetcode]7. Reverse Integer反转整数

    Given a 32-bit signed integer, reverse digits of an integer. Example 1: Input: 123 Output: 321 Examp ...

  9. [leetcode]31. Next Permutation下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  10. python--事务操作

    #coding=utf-8 import sys import MySQLdb class TransferMoney(object): def __init__(self,conn): self.c ...