【UNR #1】火车管理(主席树)

好好的代码被 \(extra\ test\) 卡常了。。。我就放一个目前最快的版本吧。。。

题意简化:

有 \(n\) 个栈,\(m\) 次操作。

  • 将 \(x\) 压入 \([l,r]\) 的栈中

  • 将 \(l\) 的栈顶弹出

  • 询问 \([l,r]\) 栈顶的和

\(n,m\leq 5\times 10^5\)

虽然最优解是神仙二叉树,我只会主席树的解法。。。

显然 \(1,3\) 操作用一棵线段树就够了,\(2\) 操作需要另外一棵主席树,并且在历史版本上修改。

\(Code\ Below:\)

#include <bits/stdc++.h>
using namespace std;
const int maxn=500000+10;
int n,m,k,a[maxn]; namespace IO{
#define gc() (iS==iT?(iT=(iS=ibuff)+fread(ibuff,1,SIZ,stdin),(iS==iT?EOF:*iS++)):*iS++)
const int SIZ=1<<21|1;
char *iS,*iT,ibuff[SIZ],obuff[SIZ],*oS=obuff,*oT=oS+SIZ-1,fu[110],c;int fr;
inline void out(){
fwrite(obuff,1,oS-obuff,stdout);
oS=obuff;
}
template <class T>
inline void read(T &x){
x=0;T y=1;
for(c=gc();(c>'9'||c<'0')&&c!='-';c=gc());
c=='-'?y=-1:x=(c&15);
for(c=gc();c>='0'&&c<='9';c=gc()) x=x*10+(c&15);
x*=y;
}
template <class T>
inline void print(T x,char text='\n'){
if(x<0) *oS++='-',x*=-1;
if(x==0) *oS++='0';
while(x) fu[++fr]=x%10+'0',x/=10;
while(fr) *oS++=fu[fr--];
*oS++=text;out();
}
} struct President_Tree{
#define rt(x) PT.rt[x]
struct node{
int sum,lazy,ls,rs;
}t[maxn*80];
int rt[maxn],cnt;
inline void pushdown(int x){
if(t[x].lazy){
if(!t[x].ls) t[x].ls=++cnt;
if(!t[x].rs) t[x].rs=++cnt;
t[t[x].ls].sum=t[t[x].rs].sum=t[t[x].ls].lazy=t[t[x].rs].lazy=t[x].lazy;
t[x].lazy=0;
}
}
inline void update(int &x,int y,int L,int R,int C,int l,int r){
x=++cnt;
if(L <= l && r <= R){t[x].sum=t[x].lazy=C;return;}
pushdown(y);t[x].ls=t[y].ls;t[x].rs=t[y].rs;
int mid=(l+r)>>1;
if(L <= mid) update(t[x].ls,t[y].ls,L,R,C,l,mid);
if(R > mid) update(t[x].rs,t[y].rs,L,R,C,mid+1,r);
}
inline int query(int x,int l,int r,int k){
if(l == r) return t[x].sum;
pushdown(x);
int mid=(l+r)>>1;
if(k <= mid) return query(t[x].ls,l,mid,k);
else return query(t[x].rs,mid+1,r,k);
}
}PT; struct Segment_Tree{
#define lson (rt<<1)
#define rson (rt<<1|1)
int sum[maxn<<2],lazy[maxn<<2];
inline void pushup(int rt){sum[rt]=sum[lson]+sum[rson];}
inline void pushdown(int rt,int len){
if(lazy[rt]){
sum[lson]=(len-(len>>1))*lazy[rt];
sum[rson]=(len>>1)*lazy[rt];
lazy[lson]=lazy[rson]=lazy[rt];
lazy[rt]=0;
}
}
inline void update(int L,int R,int C,int l,int r,int rt){
if(L <= l && r <= R){
sum[rt]=(r-l+1)*C;lazy[rt]=C;
return ;
}
pushdown(rt,r-l+1);
int mid=(l+r)>>1;
if(L <= mid) update(L,R,C,l,mid,lson);
if(R > mid) update(L,R,C,mid+1,r,rson);
pushup(rt);
}
inline int query(int L,int R,int l,int r,int rt){
if(L <= l && r <= R) return sum[rt];
pushdown(rt,r-l+1);
int mid=(l+r)>>1,ans=0;
if(L <= mid) ans+=query(L,R,l,mid,lson);
if(R > mid) ans+=query(L,R,mid+1,r,rson);
return ans;
}
}ST; int main()
{
IO::read(n),IO::read(m),IO::read(k);
int op,l,r,x,y,lastans=0;
for(int i=1;i<=n;i++){
rt(i)=rt(i-1);
IO::read(op);
if(op==1){
IO::read(l),IO::read(r);
l=(l+k*lastans)%n+1;
r=(r+k*lastans)%n+1;
if(l>r) swap(l,r);
IO::print(lastans=ST.query(l,r,1,n,1));
}
if(op==2){
IO::read(l);
l=(l+k*lastans)%n+1;
x=PT.query(rt(i),1,n,l);
if(x){
y=PT.query(rt(x-1),1,n,l);
PT.update(rt(i),rt(i),l,l,y,1,n);
ST.update(l,l,a[y],1,n,1);
}
}
if(op==3){
IO::read(l),IO::read(r);
l=(l+k*lastans)%n+1;
r=(r+k*lastans)%n+1;
if(l>r) swap(l,r);
IO::read(x);a[i]=x;
PT.update(rt(i),rt(i),l,r,i,1,n);
ST.update(l,r,x,1,n,1);
}
}
return 0;
}

【UNR #1】火车管理(主席树)的更多相关文章

  1. UOJ#218. 【UNR #1】火车管理 线段树 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ218.html 题解 如果我们可以知道每次弹出栈之后新的栈顶是什么,那么我们就可以在一棵区间覆盖.区间求和 ...

  2. UNR #1 火车管理

    很简单 用一个线段树维护 1.答案 2.当前栈顶是什么时候push进来的 然后用一棵以时间为版本的可持久化线段树维护每个操作之后第一个覆盖到他的操作是哪个 就可以了 询问直接在线段树上询问,修改在两棵 ...

  3. 【UNR #1】火车管理

    题目描述 uoj 旗下有一个火车站,用来管理属于 uoj 的小火车. 火车站一共有 nn 条编号为 1,…,n1,…,n 的,只有一端的用来存放小火车的铁路,由于小火车特殊的构造,每条铁路可以停放无数 ...

  4. UOJ #218. 【UNR #1】火车管理

    Description Solution 实际上添加问题就是一个线段树区间覆盖问题,打标记就好 对于弹栈操作比较难搞,实际上也就是一个历史查询,我们不需要保存栈中的每一个元素,我们通过查找历史状态就可 ...

  5. [bzoj3932][CQOI2015][任务查询系统] (主席树)

    Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...

  6. POJ 2104&HDU 2665 Kth number(主席树入门+离散化)

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 50247   Accepted: 17101 Ca ...

  7. bzoj 3932 [CQOI2015]任务查询系统(主席树)

    Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分. 超级计算机中的任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si ...

  8. UOJ 218 火车管理

    http://uoj.ac/problem/218 思路:建立一个可持久化线段树,代表这个位置的火车是哪辆,然后再弄一个线段树维护答案. 如果询问,直接询问线段树. 如果区间压入,直接在主席树上面压入 ...

  9. 【BZOJ3932】任务查询系统(主席树)

    [BZOJ3923]任务查询系统(主席树) 题面 Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei ...

随机推荐

  1. Delphi中Chrome Chromium、Cef3学习笔记(二)

    原文   http://blog.csdn.net/xtfnpgy/article/details/46635739   用Tchromium替换webbrowser 用惯了EmbeddedWB,不想 ...

  2. 360极速浏览器Onetab插件存储位置

    OneTab 是一款 Chrome / Firefox 扩展,用来让那些打开了但是没有空看的标签页保存到后台列表,从而节省宝「贵」的内存资源,根据 Chrome 的内存消耗情况下来,可以达到 95% ...

  3. DML DDL DCL

    转自:https://blog.csdn.net/level_level/article/details/4248685

  4. ArcPy开发教程1-面向ArcGIS的Python语言基础

    ArcPy开发教程1-面向ArcGIS的Python语言基础 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 第一节课 时间2019年2月26日 上午第一节 讲解:A ...

  5. oralce 中union 和union all 的简单使用说明

    union:对两个结果集进行合并操作:不包括重复行:同时进行默认规则的排序: union all:对两个结果集进行合并操作:包括重复行:不排序:

  6. 十三、Visitor 访问者设计模式

    需求:将数据结果与处理分开 设计原理: 代码清单: Element public interface Element { void accept(Visitor visitor); } Entry p ...

  7. [leetcode]70. Climbing Stairs爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  8. 记一次python的任务调度模块apscheduler只在首次执行任务的情况

    最近需要写个日更新的程序,用time.sleep()不能很好的控制任务的执行时间 于是,就使用了python的任务调度模块apscheduler,这个模块功能真的是很强大 具体的就不多讲了 将任务程序 ...

  9. caoni大业 spring boot 跳坑记

    IDEA环境 win10 跑得刚刚,到xp系统就戈壁 报错 Caused by: java.lang.NoSuchMethodError: javax.servlet.ServletContext.g ...

  10. 第二阶段第二次spring会议

    昨天我对39个组发表了建议以及总结了改进意见和改进方案. 今天我对便签加上了清空回收站功能 private void 清空回收站ToolStripMenuItem_Click(object sende ...