Sequence-to-sequence Framework

A Neural Attention Model for Abstractive Sentence Summarization

  • Alexander M. Rush et al., Facebook AI Research/Harvard
  • EMNLP2015
  • sentence level
  • seq2seq模型在2014年提出,这篇论文是将seq2seq模型应用在abstractive summarization任务上比较早期的论文。同组的人还发表了一篇NAACL2016(Sumit Chopra, Facebook AI Research_Abstractive sentence summarization with attentive recurrent neural networks)(作者都差不多),在这篇的基础上做了更多的改进,效果也更好。这两篇都是在abstractive summarization任务上使用seq2seq模型的经典baseline。

  • 目标函数是negative log likelihood,使用mini-batch SGD优化
  • 本文提出了3种encoder,重点在于Attention-based encoder
    • bag-of-words encoder
    • Conv encoder: 参考TextCNN,没有做过多的其他改动
    • Attention-based encoder:
      x: 原始文本
      y_c: 上下文单词(已经输出的摘要内容)

  • 生成摘要使用Beam Search算法
  • 本模型效果并不让人满意
  • 性能(ABS)
    • DUC-2004: Rouge-1:26.55/Rouge-2:7.06/Rouge-L:22.05
    • Gigaword: Rouge-1:30.88/Rouge-2:12.65/Rouge-L:28.34

Abstractive Sentence Summarization with Attentive Recurrent Neural Networks

  • Sumit Chopra et al., Facebook AI Research
  • NAACL2016
  • sentence level
  • encoder: 使用了基于注意力的CNN
    • 先将词的原始embedding(x_i)和位置embedding(l_i)(可训练)相加,作为词的full embedding(a_i)
    • 然后使用size=5的一维卷积核做一个卷积操作,得到aggregate embedding(z_i)
    • 计算attention:

      h_t-1是t-1时刻的隐层状态(吧)
    • 计算t时刻encoder的输出c_t:
  • decoder: 普通的RNN和LSTM都试了
    • 状态更新:
  • 模型encoder的输入每次都是一个完整地句子,decoder每次要输出的时候,会将h_t-1给encoder,encoder根据句子和h_t-1计算attention生成c_t给decoder,然后decoder根据(y_t-1, h_t-1, c_t)计算要输出的单词。encoder还要更新position embedding(l_i)
  • 性能(RAS-Elman, k=10, k means beam size):
    • DUC-2004: Rouge-1:28.97/Rouge-2:8.26/Rouge-L:24.06
    • Gigaword: Rouge-1:33.78/Rouge-2:15.97/Rouge-L:31.15

Abstractive Text Summarization Using Sequence-to-Sequence RNNs and Beyond

  • Ramesh Nallapati, Bowen Zhou, Cicero dos Santos; IBM
  • CoNLL2016
  • 这篇文章除了seq2seq,还用了很多的tricks来提升性能,model部分看起来挺多的,LVT在网上搜不到,搜sampled softmax就能搜到了。
  • Models
    • LVT/sampled softmax: seq2seq输出的时候使用了softmax,计算V中的每个词的值并归一化,这一步非常耗时。sampled softmax对每个句子/文章单独采样了一个V',只对V'中的词计算softmax并归一化,大幅减少了训练时的计算量。不过在测试的时候仍然需要计算所有词
    • Feature-rich encoder: 就是将POS、NER、TF、IDF等文本特征拼接在word embedding后面作为encoder的输入
    • Switching Generator-Pointer: 这个操作主要用于解决OOV和UNK问题,当碰到OOV时,g_i置为0,模型会从输入中寻找一个词作为输出和下一时间片的输入。测试时模型会自动决定采用decoder的输出还是从输入中挑选一个词作为输出。
    • Hierarchical Attention: 模型会对每个句子计算attention,并整合句子的权重计算每个词的权重。句子的的隐层状态后面还会拼接position embedding。
    • Hierarchical Attention效果没有预期的好,作者还使用了Temporary Attention(Sankaran et al., 2016, Temporal Attention Model for Neural Machine Translation),效果大幅提升。
  • DataSet: 本文提出了CNN/Daily Mail Corpus,每个摘要包含了多个句子(之前的DUC2004和Gigaword每个摘要只包含1个句子),后续被大量用于评测。
  • 性能
    • Gigaword: Rouge-1:35.30/Rouge-2:16.64/Rouge-L:32.62
    • CNN/Daily Mail Corpus: Rouge-1:35.46/Rouge-2:13.30/Rouge-L:32.65

Selective Encoding for Abstractive Sentence Summarization

  • Qingyu Zhou, Nan Yang, Furu Wei, Ming Zhou; MSRA&HIT
  • ACL2017
  • sentence level again
  • Models

    • Encoder没什么好说的,单层BiGRU为每个词x_i生成一个2d维的hidden state(h_i)
    • Selective Mechanism是将词的h_i与句子的s拼接到一起,搁到一个前馈网络里生成输出h'_i。行吧,但是你这s有点不讲道理啊,凭啥s=[h←_1, h→_n],凭啥这个就能代表整个句子。h←_1表示从右到左读取了整个句子, h→_n表示从左到右读取了整个句子,看起来还是比较合理的。
    • Decoder的不同在于maxout。GRU使用s_t-1, c_t-1, y_t-1更新s_t;s_t+h_i计算e_i然后归一化得到权重α_i,乘以h'_i得到context向量c_t,和s_t、y_t-1一起放到一个maxout层(k=2)中得到output,然后使用softmax。这个maxout层有点意思,相当于不同层网络之间有2套互相独立的权重参数,输出z的时候选一个能让z大的参数。这里encoder使用了BiGRU,decoder得到的输出是2d,使用k=2的maxout合并相邻的两个数值,将输出降为d维(细细一想好像不是很有道理……把第i个和d+i个合并是不是好一点,毕竟在向量空间中是同一个维度)。
  • 性能: all are state-of-the-art
    • Gigaword(Rush et al., 2015): Rouge-1:36.15/Rouge-2:17.54/Rouge-L:33.63
    • Gigaword(ours): Rouge-1:46.86/Rouge-2:24.58/Rouge-L:43.53(sounds something strange??? why so high?)
    • DUC2004: Rouge-1:29.21/Rouge-2:9.56/Rouge-L:25.51

Incorporating copying mechanism in sequence-to-sequence learning

  • Jiatao GU et al.
  • ACL2016
  • using LCSTS Dataset
  • Models
    • 整体:
    • Decoder State Update: s_t=f(s_t-1, y_t-1, c_t)这个和常规的是一样的,但是这里的y_t-1=[e(y_t-1), C(y_t-1)]T,e就是y_t-1的embedding,C是输入单词的权重,对跟y_t-1相同的词进行计算,不相同的词直接置0,然后归一化。
    • Prediction: 相比上一个有个开关的方式,这篇论文则将概率相加再softmax得到输出。对于V中的每个词,计算generation模式的概率,对于X中的每个词,计算copy模式的概率,最后进行归一化,得到输出。
  • Code: https://github.com/MultiPath/CopyNet
  • 性能:
    • LCSTS(Word Level): Rouge-1:35.0/Rouge-2:22.3/Rouge-L:32.0

Sequential Copying Networks

  • Qingyu Zhouy, Nan Yang, Furu Wei, Ming Zhou; HIT & MSRA
  • AAAI2018
  • 原先的CopyNet每次copy一个词,这篇文章一次可以copy多个词(词组),通过给每个copy的词打标签来判断是否结束
  • 性能
    • Gigaword: Rouge-1:35.93/Rouge-2:17.51/Rouge-L:33.35

Global Encoding for Abstractive Summarization

  • Junyang Lin, Xu Sun, Shuming Ma, Qi Su; PKU
  • ACL2018
  • Models
    • 这篇文章想解决的问题是decoder在输出时可能会不断重复已有的单词。在ICLR2018的A Deep Reinforced Model for Abstractive Summarization已经用过Intra-Decoder Attention尝试从已经输出过的内容上解决这个问题,这篇文章提出了Global Encoding方法使用源文本来尝试解决这个问题。
    • 模型的encoder和decoder都比较常规,BiLSTM作为encoder,LSTM作为decoder。但是对于encoder的输出h_i,模型使用了CNN门控单元和self-attention机制来计算全局的权重,最终作为decoder的输入。

A Deep Reinforced Model for Abstractive Summarization

  • Romain Paulus, Caiming Xiong & Richard Socher; Salesforce Research
  • ICLR2018
  • Renforcement Learning
  • Models(Attention Mechanism)
    • Intra-Temporal Attention: 普通的Attention都是依次计算当前decoder的状态s_t与每个encoder的隐层状态h_i的得分e_i,然后归一化得到权重α_i,再加权求和得到上下文向量c_t。这篇文章对e_i做了修改,对所有时间片t的e_ti做归一化,得到对应时间片的归一化时序得分e'_ti,然后再对所有encoder的隐层状态做一次归一化得到权重并计算c_t。

    • Intra-Decoder Attention: 普通的Attention都是计算当前decoder状态与不同encoder之间的权重。然而,已经由decoder输出的词对decoder输出下一个词同样是有影响的,例如可以避免输出陷入循环。因此这篇文章设计了一个decoder当前隐层状态与decoder历史隐层状态的attention机制。先计算当前h_t与历史每个h_t'的得分,然后归一化得到权重,最后加权求和得到decoder的上下文输出c_t_d。
    • Generation/Pointer: 这里的copy机制与CopyNet有稍许不同。CopyNet是计算Generation、Pointer模式下的得分,最后统一归一化得到概率。这里先计算使用Pointer模式的概率,然后求得y_t的期望,选择期望最大的值作为输出。模式概率计算如公式:

    Pointer模式下y_t=x_i的条件概率直接取Intra-Temporal Attention中计算出的权重α_i,Generation模式下的条件概率使用softmax得到,计算公式类似于上述公式(σ替换为softmax)

    • Weight Sharing: 输出的embedding matrix是由输入的embedding matrix之间加了一层非线性映射得到的。(参考Inan et al. (2017) and Press & Wolf (2016))

    • beam search的时候,对于已经出现过的trigram,直接将概率设为0避免重复。
  • Models(Hybrid Learning Objective)
    • Teacher Forcing算法。通常的目标函数都是NLL,然而即便达到最优,在使用离散评价方式(ROUGE, CIDEr, BLEU)进行评价的时候,往往得不到最好的效果,主要原因有俩:1. 训练的时候使用正确的单词作为下一时间片的输入,每一步的错误不会累积,但是测试的时候每一步的错误会累积到下一时间片。2. 输出文本的词序是灵活的,离散的评价方式也考虑到了这种灵活性,但是NLL没有。
    • Policy Learning: 强化学习的两种常用算法(Policy Gradient, Q-Learning)之一。本文使用self-critical policy gradient training algorithm (Rennie et al., 2016)。decoder生成2个输出序列,一个使用常规的方法生成y^,另一个基于p(ys_t|ys_t-1, ..., ys_1, x)概率分布抽样得到ys,r是评分函数,强化学习的目标函数如下:

    最终的混合目标函数如下:

  • 性能
    • CNN/Daily Mail(only ML): Rouge-1:38.30/Rouge-2:14.81/Rouge-L:35.49
    • CNN/Daily Mail(only RL): Rouge-1:41.16/Rouge-2:15.75/Rouge-L:39.08
    • CNN/Daily Mail(ML+RL): Rouge-1:39.87/Rouge-2:15.82/Rouge-L:36.90
  • 分析
    • 我们可以看到only RL的Rouge评分高于ML+RL不少,然而其可读性得不到保证。我们对每条摘要找了5个人从1-10分中打分,RL的得分是最低的,远低于ML。ML+RL的得分则最高。

Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting

  • Yen-Chun Chen, Mohit Bansal; UNC Chapel Hill
  • ACL2018
  • Extractor + Abstractor + Reinforcement Learning
  • 与我们的需求并不完全符合,没有深究
  • Models

    • : parallel decoding
    • decoder: CopyNet-like
    • 强化学习仅调整Extractor参数,不调整Abstractor参数,避免生成的句子可读性差,同样使用Policy Gradient学习算法。
  • 性能
    • CNN/Daily Mail: Rouge-1:40.88/Rouge-2:17.80/Rouge-L:38.54

A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization

  • Li Wang1, Junlin Yao2, Yunzhe Tao3, Li Zhong1, Wei Liu4, Qiang Du3

    • 1 Tencent Data Center of SNG
    • 2 ETH Zurich
    • 3 Columbia University
    • 4 Tencent AI Lab
  • IJCAI-ECAI2018
  • Conv Seq2seq + LDA + Reinforcement Learning
  • Models

    • Position Embedding: 每个词的输入=词向量+位置向量。词向量是随机初始化的,位置向量没说。
    • Gated Linear Unit: 每层的卷积操作做个线性变化到2d维,拆分成[A; B],然后两边残差连接喂入下一层
    • Multi-Step Attention: 先对隐层状态做个embedding再计算权重:

    W、b是参数,h是隐层状态,q_i是上一个输出的词。

    • Topic Embedding: 对于每个主题,抽取出前N个词出来构成词表K,预训练得到topic embedding。对于输入中的每个词,如果在K中,则使用topic embedding,否则使用word embedding。
    • Joint Attention: 在Topic-aware Conv过程中,计算Attention权重时,除了要计算当前decoder隐层状态与每个encoder输出的点积,还要计算当前decoder隐层状态与input ebmedding中每个encoder输出的点积,再求和并归一化作为权重。
    • Biased Probability Generation:

    Ψ是一个带偏置项的线性变换。

    • Reinforcement Learning: 策略和A Deep Reinforced Model for Abstractive Summarization一模一样,λ_RL=0.99
  • 性能
    • Gigawords: Rouge-1:36.92/Rouge-2:18.29/Rouge-L:34.58
    • DUC2004: Rouge-1:31.15/Rouge-2:10.85/Rouge-L:27.68
    • LCSTS(word): Rouge-1:39.93/Rouge-2:33.08/Rouge-L:42.68

Controllable Abstractive Summarization

  • Angela Fan, David Grangier, Michael Auli, Facebook
  • ACL2018
  • 之前的论文都忽视了用户的个人风格,包括摘要长度,行文风格,用词等。这篇论文可以按照用户的输入来生成类似风格的摘要。在无用户输入的情况下,模型也能达到State-of-the-art。

Deep Communicating Agents for Abstractive Summarization

  • Asli Celikyilmaz1, et al.; MSRA
  • NAACL2018
  • Models

    • 这篇文章想解决长文本的摘要问题,将文本划分成多个段落,对每个段落进行encode操作并计算内部的word attention,最后得到整个段落的embedding。之后将所有段落合并到一起计算Context Agent Attention,作为decoder的输入。
    • 改进了Pointer Network,可以从不同段落中抽取单词。
    • 同样使用了Reinforcement Learning,但是前面的RL目标函数都是采样得到一个y,再计算y与输出的y^之间Rouge得分差作为优化目标。这篇文章的每输出一个单词就计算一次当前Rouge得分,减去上一次的得分,作为优化目标。

Examples

A Reinforced Topic-Aware Convolutional Sequence-to-Sequence Model for Abstractive Text Summarization

  • Source: 昨日,商报记者从代表国内婚尚产业“ 风向标” 的上海国际婚纱摄影器材展览会上了解到,部分商家开始将婚庆布置、婚礼流程、形式交给新人决定以迎合## 后新人的需求。此次展览会的规模超过#万平方米,吸引参展企业超过###家。
  • Reference: 婚庆“私人定制”受##后新人追捧
  • Output:上海国际婚纱摄影器材展览会昨举行

  • Source: 新疆独特的区位优势,使其成为“ 一带一路” 战略重要一环。记者从新疆发改委获悉,库尔勒至格尔木铁路先期开工段已进入招投标阶段,计划#### 年##月中旬正式开工建设。#### 年计划完成投资## 亿元。
  • Reference: “一带一路”战略惠及新疆, 铁路年底开建
  • Output: 库尔勒至格尔木铁路拟##月开工建设

  • Source: 成都市软件和信息技术服务业近年来一直保持快速增长势头,稳居中西部城市之首,已成为我国西部“ 硅谷” 。《#### 年度成都市软件和信息技术服务产业发展报告》日前发布......详情请见: @ 成都日报@ 成都发布
  • Reference: 成都倾力打造西部“ 硅谷”
  • Output: 成都软件和信息技术服务业跃居西部“ 硅谷”

  • Source: 根据#### 年# 月# 日国家发改委等部门联合发布的《关于进一步做好新能源汽车推广应用工作的通知》,#### 年的补贴金额相比####年将降低##%。(分享自@ 电动邦)
  • Reference: 补贴金额再缩水####年新能源车政策解读
  • Output: 国家发改委发文进一步做好新能源汽车推广应用工作

Global Encoding for Abstractive Summarization

  • Source: 较早进入中国市场的星巴克, 是不少小资钟情的品牌。相比在美国的平民形象,星巴克在中国就显得“高端”得多。用料并无差别的杯中杯美式咖啡,在美国仅约合人民币12元,国内要卖21元,相当于贵了75%。第一财经日报
  • Reference: 媒体称星巴克美式咖啡售价中国比美国贵75%。
  • Output: 星巴克美式咖啡中国贵75%。

后续方向

  • 商讨项目前端的样式
  • 选取一些模型进行实验

Abstractive Summarization的更多相关文章

  1. Natural Language Generation/Abstractive Summarization

    调研目的: 了解生成式文本摘要的常用技术和当前的发展趋势,明确当前项目有什么样的摘要需求,判断现有技术能否用于满足当前的需求,进一步明确毕业设计方向及其可行性 调研方向: 项目中需要用到摘要的地方以及 ...

  2. Multi-modal Sentence Summarization with Modality Attention and Image Filtering 论文笔记

     文章已同步更新在https://ldzhangyx.github.io/,欢迎访问评论.   五个月没写博客了,不熟悉我的人大概以为我挂了…… 总之呢这段时间还是成长了很多,在加拿大实习的两个多月来 ...

  3. 自然语言处理中的自注意力机制(Self-attention Mechanism)

    自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力 ...

  4. (转)awesome-text-summarization

    awesome-text-summarization 2018-07-19 10:45:13 A curated list of resources dedicated to text summari ...

  5. (zhuan) Attention in Long Short-Term Memory Recurrent Neural Networks

    Attention in Long Short-Term Memory Recurrent Neural Networks by Jason Brownlee on June 30, 2017 in  ...

  6. Awesome Torch

    Awesome Torch This blog from: A curated list of awesome Torch tutorials, projects and communities. T ...

  7. 自注意力机制(Self-attention Mechanism)——自然语言处理(NLP)

    近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机 ...

  8. 【DeepLearning】一些资料

    记录下,有空研究. http://nlp.stanford.edu/projects/DeepLearningInNaturalLanguageProcessing.shtml http://nlp. ...

  9. 回望2017,基于深度学习的NLP研究大盘点

    回望2017,基于深度学习的NLP研究大盘点 雷锋网 百家号01-0110:31 雷锋网 AI 科技评论按:本文是一篇发布于 tryolabs 的文章,作者 Javier Couto 针对 2017 ...

随机推荐

  1. 皮肤控件IrisSkin4.dll调用样例-vs2010-c#

    http://blog.csdn.net/wy7980/article/details/41933095

  2. 启用crontab

    1.登录到root用户. 2.在root下输入:crontab -e 3.可能会提示你: no crontab for root - using an empty one 然后会叫你“Select a ...

  3. 虚拟DOM与DOM diff算法

    虚拟DOM是什么? 一个虚拟DOM(元素)是一个一般的js对象, 准确的说是一个对象树(倒立的) 虚拟DOM保存了真实DOM的层次关系和一些基本属性,与真实DOM一一对应,如果只是更新虚拟DOM, 页 ...

  4. 使用KVM虚拟机遇到的问题(持续更新)

    1.qemu-kvm.kvm.qemu 和 qemu-system-x86_64四种命令的差别 qemu 和 qemu-system-x86_64:启动qemu虚拟机的命令,x86_64为64位系统时 ...

  5. API--ResponseBody-类

    import com.fasterxml.jackson.annotation.JsonInclude; import com.fasterxml.jackson.annotation.JsonInc ...

  6. nginx跟apache访问方法

    ifconfig 在浏览器中输入ip即可访问 centos安装nginx环境 1:进入 cd /usr/local/src  //下载文件放到这个目录中 2:wget http://nginx.org ...

  7. MP实战系列(一)之入门框架搭建和使用

    mybatis plus官网:https://github.com/baomidou/mybatis-plus 上面有对应的实际例子,直接导入即可用. mybatis plus官方的怎么介绍,我就不在 ...

  8. zabbix学习-如何部署一个agent客户端

    1. 部署一个agent客户端很简单,比如监控服务器本身 yum install zabbix-agent -y 2.配置文件位置: vim /etc/zabbix/zabbix-agendt.con ...

  9. Linux 从网卡到TCP IP协议栈数据流跟踪与审计

    前沿 在学代码审计,然后最近做Linux协议栈的审计,发现Linux不愧是一个久经考验的系统,本来以为可以找到个DoS的,结果发现其在TCP/IP协议栈的链路层实现,利用了各种技术,用来提高性能与安全 ...

  10. MySQL(九)插入、更新和删除

    常用的SQL语句,除了select用于查询,还有insert.update.delete等. 一.insert insert:用来插入(或添加)行到数据库中,常见方式有以下几种: ①插入完整的行: ② ...