学习笔记TF040:多GPU并行
TensorFlow并行,模型并行,数据并行。模型并行根据不同模型设计不同并行方式,模型不同计算节点放在不同硬伯上资源运算。数据并行,比较通用简便实现大规模并行方式,同时使用多个硬件资源计算不同batch数据梯度,汇总梯度全局参数更新。
数据并行,多块GPU同时训练多个batch数据,运行在每块GPU模型基于同一神经网络,网络结构一样,共享模型参数。
同步数据并行,所有GPU计算完batch数据梯度,统计将多个梯度合在一起,更新共享模型参数,类似使用较大batch。GPU型号、速度一致时,效率最高。
异步数据并行,不等待所有GPU完成一次训练,哪个GPU完成训练,立即将梯度更新到共享模型参数。
同步数据并行,比异步收敛速度更快,模型精度更高。
同步数据并行,数据集CIFAR-10。载入依赖库,TensorFlow Models cifar10类,下载CIFAR-10数据预处理。
设置batch大小 128,最大步数100万步(中间随时停止,模型定期保存),GPU数量4。
定义计算损失函数tower_loss。cifar10.distorted_inputs产生数据增强images、labels,调用cifar10.inference生成卷积网络,每个GPU生成单独网络,结构一致,共享模型参数。根据卷积网络、labels,调用cifar10.loss计算损失函数(loss储存到collection),tf.get_collection('losses',scope)获取当前GPU loss(scope限定范围),tf.add_n 所有损失叠加一起得total_loss。返回total_loss作函数结果。
定义函数average_gradients,不同GPU计算梯度合成。输入参数tower_grads梯度双层列表,外层列表不同GPU计算梯度,内层列表GPU计算不同Variable梯度。最内层元素(grads,variable),tower_grads基本元素二元组(梯度、变量),具体形式[[(grad0_gpu0,var0_gpu0),(grad1_gpu0,var1_gpu0)……],[(grad0_gpu1,var0_gpu1),(grad1_gpu1,var1_gpu1)……]……]。创建平均梯度列表average_grads,梯度在不同GPU平均。zip(*tower_grads)双层列表转置,变[[(grad0_gpu0,var0_gpu0),(grad0_gpu1,var0_gpu1)……],[(grad1_gpu0,var1_gpu0),(grad1_gpu1,var1_gpu1)……]……]形式,循环遍历元素。循环获取元素grad_and_vars,同Variable梯度在不同GPU计算结果。同Variable梯度不同GPU计算副本,计算梯度均值。梯度N维向量,每个维度平均。tf.expand_dims给梯度添加冗余维度0,梯度放列表grad。tf.concat 维度0上合并。tf.reduce_mean维度0平均,其他维度全部平均。平均梯度,和Variable组合得原有二元组(梯度、变量)格式,添加到列表average_grads。所有梯度求均后,返回average_grads。
定义训练函数。设置默认计算设备CPU。global_step记录全局训练步数,计算epoch对应batch数,学习速率衰减需要步数decay_steps。tf.train.exponential_decay创建随训练步数衰减学习速率,第一参数初始学习速率,第二参数全局训练步数,第三参数每次衰减需要步数,第四参数衰减率,staircase设true,阶梯式衰减。设置优化算法GradientDescent,传入随机步数衰减学习速率。
定义储存GPU计算结果列表tower_grads。创建循环,循环次数GPU数量。循环中tf.device限定使用哪个GPU。tf.name_scope命名空间。
GPU用tower_loss获取损失。tf.get_variable_scope().reuse_variables()重用参数。GPU共用一个模型入完全相同参数。opt.compute_gradients(loss)计算单个GPU梯度,添加到梯度列表tower_grads。average_gradients计算平均梯度,opt.apply_gradients更新模型参数。
创建模型保存器saver,Session allow_soft_placement 参数设True。有些操作只能在CPU上进行,不使用soft_placement。初始化全部参数,tf.train.start_queue_runner()准备大量数据增强训练样本,防止训练被阻塞在生成样本。
训练循环,最大迭代次数max_steps。每步执行一次更新梯度操作apply_gradient_op(一次训练操作),计算损失操作loss。time.time()记录耗时。每隔10步,展示当前batch loss。每秒钟可训练样本数和每个batch训练花费时间。每隔1000步,Saver保存整个模型文件。
cifar10.maybe_download_and_extract()下载完整CIFAR-10数据,train()开始训练。
loss从最开始4点几,到第70万步,降到0.07。平均每个batch耗时0.021s,平均每秒训练6000个样本,单GPU 4倍。
import os.path
import re
import time
import numpy as np
import tensorflow as tf
import cifar10
batch_size=128
#train_dir='/tmp/cifar10_train'
max_steps=1000000
num_gpus=4
#log_device_placement=False
def tower_loss(scope):
"""Calculate the total loss on a single tower running the CIFAR model.
Args:
scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
Returns:
Tensor of shape [] containing the total loss for a batch of data
"""
# Get images and labels for CIFAR-10.
images, labels = cifar10.distorted_inputs()
# Build inference Graph.
logits = cifar10.inference(images)
# Build the portion of the Graph calculating the losses. Note that we will
# assemble the total_loss using a custom function below.
_ = cifar10.loss(logits, labels)
# Assemble all of the losses for the current tower only.
losses = tf.get_collection('losses', scope)
# Calculate the total loss for the current tower.
total_loss = tf.add_n(losses, name='total_loss')
# Compute the moving average of all individual losses and the total loss.
# loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
# loss_averages_op = loss_averages.apply(losses + [total_loss])
# Attach a scalar summary to all individual losses and the total loss; do the
# same for the averaged version of the losses.
# for l in losses + [total_loss]:
# Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
# session. This helps the clarity of presentation on tensorboard.
# loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
# Name each loss as '(raw)' and name the moving average version of the loss
# as the original loss name.
# tf.scalar_summary(loss_name +' (raw)', l)
# tf.scalar_summary(loss_name, loss_averages.average(l))
# with tf.control_dependencies([loss_averages_op]):
# total_loss = tf.identity(total_loss)
return total_loss
def average_gradients(tower_grads):
"""Calculate the average gradient for each shared variable across all towers.
Note that this function provides a synchronization point across all towers.
Args:
tower_grads: List of lists of (gradient, variable) tuples. The outer list
is over individual gradients. The inner list is over the gradient
calculation for each tower.
Returns:
List of pairs of (gradient, variable) where the gradient has been averaged
across all towers.
"""
average_grads = []
for grad_and_vars in zip(*tower_grads):
# Note that each grad_and_vars looks like the following:
# ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
grads = []
for g, _ in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(grads, 0)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def train():
"""Train CIFAR-10 for a number of steps."""
with tf.Graph().as_default(), tf.device('/cpu:0'):
# Create a variable to count the number of train() calls. This equals the
# number of batches processed * FLAGS.num_gpus.
global_step = tf.get_variable(
'global_step', [],
initializer=tf.constant_initializer(0), trainable=False)
# Calculate the learning rate schedule.
num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
batch_size)
decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
# Decay the learning rate exponentially based on the number of steps.
lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
global_step,
decay_steps,
cifar10.LEARNING_RATE_DECAY_FACTOR,
staircase=True)
# Create an optimizer that performs gradient descent.
opt = tf.train.GradientDescentOptimizer(lr)
# Calculate the gradients for each model tower.
tower_grads = []
for i in range(num_gpus):
with tf.device('/gpu:%d' % i):
with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
# Calculate the loss for one tower of the CIFAR model. This function
# constructs the entire CIFAR model but shares the variables across
# all towers.
loss = tower_loss(scope)
# Reuse variables for the next tower.
tf.get_variable_scope().reuse_variables()
# Retain the summaries from the final tower.
# summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
# Calculate the gradients for the batch of data on this CIFAR tower.
grads = opt.compute_gradients(loss)
# Keep track of the gradients across all towers.
tower_grads.append(grads)
# We must calculate the mean of each gradient. Note that this is the
# synchronization point across all towers.
grads = average_gradients(tower_grads)
# Add a summary to track the learning rate.
# summaries.append(tf.scalar_summary('learning_rate', lr))
# Add histograms for gradients.
# for grad, var in grads:
# if grad is not None:
# summaries.append(
# tf.histogram_summary(var.op.name + '/gradients', grad))
# Apply the gradients to adjust the shared variables.
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
# Add histograms for trainable variables.
# for var in tf.trainable_variables():
# summaries.append(tf.histogram_summary(var.op.name, var))
# Track the moving averages of all trainable variables.
# variable_averages = tf.train.ExponentialMovingAverage(
# cifar10.MOVING_AVERAGE_DECAY, global_step)
# variables_averages_op = variable_averages.apply(tf.trainable_variables())
# Group all updates to into a single train op.
# train_op = tf.group(apply_gradient_op, variables_averages_op)
# Create a saver.
saver = tf.train.Saver(tf.all_variables())
# Build the summary operation from the last tower summaries.
# summary_op = tf.merge_summary(summaries)
# Build an initialization operation to run below.
init = tf.global_variables_initializer()
# Start running operations on the Graph. allow_soft_placement must be set to
# True to build towers on GPU, as some of the ops do not have GPU
# implementations.
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
sess.run(init)
# Start the queue runners.
tf.train.start_queue_runners(sess=sess)
# summary_writer = tf.train.SummaryWriter(train_dir, sess.graph)
for step in range(max_steps):
start_time = time.time()
_, loss_value = sess.run([apply_gradient_op, loss])
duration = time.time() - start_time
assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
if step % 10 == 0:
num_examples_per_step = batch_size * num_gpus
examples_per_sec = num_examples_per_step / duration
sec_per_batch = duration / num_gpus
format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f '
'sec/batch)')
print (format_str % (step, loss_value,
examples_per_sec, sec_per_batch))
# if step % 100 == 0:
# summary_str = sess.run(summary_op)
# summary_writer.add_summary(summary_str, step)
# Save the model checkpoint periodically.
if step % 1000 == 0 or (step + 1) == max_steps:
# checkpoint_path = os.path.join(train_dir, 'model.ckpt')
saver.save(sess, '/tmp/cifar10_train/model.ckpt', global_step=step)
cifar10.maybe_download_and_extract()
#if tf.gfile.Exists(train_dir):
# tf.gfile.DeleteRecursively(train_dir)
#tf.gfile.MakeDirs(train_dir)
train()
参考资料:
《TensorFlow实战》
欢迎付费咨询(150元每小时),我的微信:qingxingfengzi
学习笔记TF040:多GPU并行的更多相关文章
- Python Web学习笔记之并发和并行的区别和实现
你吃饭吃到一半,电话来了,你一直到吃完了以后才去接,这就说明你不支持并发也不支持并行.你吃饭吃到一半,电话来了,你停了下来接了电话,接完后继续吃饭,这说明你支持并发.你吃饭吃到一半,电话来了,你一边打 ...
- Go语言并发与并行学习笔记(一)
转:http://blog.csdn.net/kjfcpua/article/details/18265441 如果不是我对真正并行的线程的追求,就不会认识到Go有多么的迷人. Go语言从语言层面上就 ...
- Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)
0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windo ...
- JavaSE中线程与并行API框架学习笔记——线程为什么会不安全?
前言:休整一个多月之后,终于开始投简历了.这段时间休息了一阵子,又病了几天,真正用来复习准备的时间其实并不多.说实话,心里不是非常有底气. 这可能是学生时代遗留的思维惯性--总想着做好万全准备才去做事 ...
- Unity3D学习笔记6——GPU实例化(1)
目录 1. 概述 2. 详论 3. 参考 1. 概述 在之前的文章中说到,一种材质对应一次绘制调用的指令.即使是这种情况,两个三维物体使用同一种材质,但它们使用的材质参数不一样,那么最终仍然会造成两次 ...
- Unity3D学习笔记7——GPU实例化(2)
目录 1. 概述 2. 详论 2.1. 实现 2.2. 解析 3. 参考 1. 概述 在上一篇文章<Unity3D学习笔记6--GPU实例化(1)>详细介绍了Unity3d中GPU实例化的 ...
- Unity3D学习笔记8——GPU实例化(3)
目录 1. 概述 2. 详论 2.1. 自动实例化 2.2. MaterialPropertyBlock 3. 参考 1. 概述 在前两篇文章<Unity3D学习笔记6--GPU实例化(1)&g ...
- JavaSE中线程与并行API框架学习笔记1——线程是什么?
前言:虽然工作了三年,但是几乎没有使用到多线程之类的内容.这其实是工作与学习的矛盾.我们在公司上班,很多时候都只是在处理业务代码,很少接触底层技术. 可是你不可能一辈子都写业务代码,而且跳槽之后新单位 ...
- 【Unity Shaders】学习笔记——渲染管线
[Unity Shaders]学习笔记——Shader和渲染管线 转载请注明出处:http://www.cnblogs.com/-867259206/p/5595924.html 写作本系列文章时使用 ...
随机推荐
- Mongo数据库操作/数据库版本号
第一步,找到mongodb安装目录第二步,从命令行进入mongodb安装目录下的bin目录 附:http://www.runoob.com/mongodb/mongodb-create-databas ...
- js数组和数组去重的几种简单的方法
http://blog.csdn.net/liangklfang/article/details/49300417 1.证明一个对象是数组的方法. 方法(1) [].constructor === A ...
- [Hibernate] One-To-Many 配置文件和注解的方式以及HQL语句
一对多需要在一的类配置多的类的set泛型集合. 多的一端需要添加一的类作为属性,其和数据库对应的是对应表的主键. 一个购物车有多个商品,购物车有个cart_id作为主键,商品除了自己的items_id ...
- 雷林鹏分享:jQuery EasyUI 数据网格 - 合并单元格
jQuery EasyUI 数据网格 - 合并单元格 数据网格(datagrid)经常需要合并一些单元格.本教程将向您展示如何在数据网格(datagrid)中合并单元格. 为了合并数据网格(datag ...
- 雷林鹏分享:jQuery EasyUI 数据网格 - 使用虚拟滚动视图显示海量数据
jQuery EasyUI 数据网格 - 使用虚拟滚动视图显示海量数据 数据网格(datagrid)的虚拟滚动特性可以用来显示大数量的记录而不需要分页. 当滚动垂直滚动条时,数据网格(datagrid ...
- day042 css 选择器
css(Cascading Style Sheet) 层叠样式表,定义了如何显示HTML元素,给HTML设置样式,让它看起来更好 一.css语法 css样式包括两部门,选择器(给谁的样式)和声明(什么 ...
- React文档(十)表单
HTML表单元素和 React里的其他DOM元素有些不同,因为它们会保留一些内部的状态.举个例子,这个普通的表单接受唯一的name值: <form> <label> Name: ...
- for each...in
for each...in 使用一个变量迭代一个对象的所有属性值,对于每一个属性值,有一个指定的语句块被执行. for each...in 是 ECMA-357 (E4X) 标准的一部分, 大部分非M ...
- [spring源码] 小白级别的源码解析IOC容器的依赖注入(三)
上一篇介绍了ioc容器的初始化过程,主要完成了ioc容器建立beanDefinition数据映射.并没有看到ioc容器对bean依赖关系进行注入. 接口getbean就是出发依赖注入发生的地方.下面从 ...
- promise学习总结
什么是Promise Promise是异步编程的一种解决方案,它有三种状态,分别是pending-进行中.resolved-已完成.rejected-已失败 当Promise的状态又pending转变 ...