学习笔记TF040:多GPU并行
TensorFlow并行,模型并行,数据并行。模型并行根据不同模型设计不同并行方式,模型不同计算节点放在不同硬伯上资源运算。数据并行,比较通用简便实现大规模并行方式,同时使用多个硬件资源计算不同batch数据梯度,汇总梯度全局参数更新。
数据并行,多块GPU同时训练多个batch数据,运行在每块GPU模型基于同一神经网络,网络结构一样,共享模型参数。
同步数据并行,所有GPU计算完batch数据梯度,统计将多个梯度合在一起,更新共享模型参数,类似使用较大batch。GPU型号、速度一致时,效率最高。
异步数据并行,不等待所有GPU完成一次训练,哪个GPU完成训练,立即将梯度更新到共享模型参数。
同步数据并行,比异步收敛速度更快,模型精度更高。
同步数据并行,数据集CIFAR-10。载入依赖库,TensorFlow Models cifar10类,下载CIFAR-10数据预处理。
设置batch大小 128,最大步数100万步(中间随时停止,模型定期保存),GPU数量4。
定义计算损失函数tower_loss。cifar10.distorted_inputs产生数据增强images、labels,调用cifar10.inference生成卷积网络,每个GPU生成单独网络,结构一致,共享模型参数。根据卷积网络、labels,调用cifar10.loss计算损失函数(loss储存到collection),tf.get_collection('losses',scope)获取当前GPU loss(scope限定范围),tf.add_n 所有损失叠加一起得total_loss。返回total_loss作函数结果。
定义函数average_gradients,不同GPU计算梯度合成。输入参数tower_grads梯度双层列表,外层列表不同GPU计算梯度,内层列表GPU计算不同Variable梯度。最内层元素(grads,variable),tower_grads基本元素二元组(梯度、变量),具体形式[[(grad0_gpu0,var0_gpu0),(grad1_gpu0,var1_gpu0)……],[(grad0_gpu1,var0_gpu1),(grad1_gpu1,var1_gpu1)……]……]。创建平均梯度列表average_grads,梯度在不同GPU平均。zip(*tower_grads)双层列表转置,变[[(grad0_gpu0,var0_gpu0),(grad0_gpu1,var0_gpu1)……],[(grad1_gpu0,var1_gpu0),(grad1_gpu1,var1_gpu1)……]……]形式,循环遍历元素。循环获取元素grad_and_vars,同Variable梯度在不同GPU计算结果。同Variable梯度不同GPU计算副本,计算梯度均值。梯度N维向量,每个维度平均。tf.expand_dims给梯度添加冗余维度0,梯度放列表grad。tf.concat 维度0上合并。tf.reduce_mean维度0平均,其他维度全部平均。平均梯度,和Variable组合得原有二元组(梯度、变量)格式,添加到列表average_grads。所有梯度求均后,返回average_grads。
定义训练函数。设置默认计算设备CPU。global_step记录全局训练步数,计算epoch对应batch数,学习速率衰减需要步数decay_steps。tf.train.exponential_decay创建随训练步数衰减学习速率,第一参数初始学习速率,第二参数全局训练步数,第三参数每次衰减需要步数,第四参数衰减率,staircase设true,阶梯式衰减。设置优化算法GradientDescent,传入随机步数衰减学习速率。
定义储存GPU计算结果列表tower_grads。创建循环,循环次数GPU数量。循环中tf.device限定使用哪个GPU。tf.name_scope命名空间。
GPU用tower_loss获取损失。tf.get_variable_scope().reuse_variables()重用参数。GPU共用一个模型入完全相同参数。opt.compute_gradients(loss)计算单个GPU梯度,添加到梯度列表tower_grads。average_gradients计算平均梯度,opt.apply_gradients更新模型参数。
创建模型保存器saver,Session allow_soft_placement 参数设True。有些操作只能在CPU上进行,不使用soft_placement。初始化全部参数,tf.train.start_queue_runner()准备大量数据增强训练样本,防止训练被阻塞在生成样本。
训练循环,最大迭代次数max_steps。每步执行一次更新梯度操作apply_gradient_op(一次训练操作),计算损失操作loss。time.time()记录耗时。每隔10步,展示当前batch loss。每秒钟可训练样本数和每个batch训练花费时间。每隔1000步,Saver保存整个模型文件。
cifar10.maybe_download_and_extract()下载完整CIFAR-10数据,train()开始训练。
loss从最开始4点几,到第70万步,降到0.07。平均每个batch耗时0.021s,平均每秒训练6000个样本,单GPU 4倍。
- import os.path
- import re
- import time
- import numpy as np
- import tensorflow as tf
- import cifar10
- batch_size=128
- #train_dir='/tmp/cifar10_train'
- max_steps=1000000
- num_gpus=4
- #log_device_placement=False
- def tower_loss(scope):
- """Calculate the total loss on a single tower running the CIFAR model.
- Args:
- scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
- Returns:
- Tensor of shape [] containing the total loss for a batch of data
- """
- # Get images and labels for CIFAR-10.
- images, labels = cifar10.distorted_inputs()
- # Build inference Graph.
- logits = cifar10.inference(images)
- # Build the portion of the Graph calculating the losses. Note that we will
- # assemble the total_loss using a custom function below.
- _ = cifar10.loss(logits, labels)
- # Assemble all of the losses for the current tower only.
- losses = tf.get_collection('losses', scope)
- # Calculate the total loss for the current tower.
- total_loss = tf.add_n(losses, name='total_loss')
- # Compute the moving average of all individual losses and the total loss.
- # loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
- # loss_averages_op = loss_averages.apply(losses + [total_loss])
- # Attach a scalar summary to all individual losses and the total loss; do the
- # same for the averaged version of the losses.
- # for l in losses + [total_loss]:
- # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
- # session. This helps the clarity of presentation on tensorboard.
- # loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
- # Name each loss as '(raw)' and name the moving average version of the loss
- # as the original loss name.
- # tf.scalar_summary(loss_name +' (raw)', l)
- # tf.scalar_summary(loss_name, loss_averages.average(l))
- # with tf.control_dependencies([loss_averages_op]):
- # total_loss = tf.identity(total_loss)
- return total_loss
- def average_gradients(tower_grads):
- """Calculate the average gradient for each shared variable across all towers.
- Note that this function provides a synchronization point across all towers.
- Args:
- tower_grads: List of lists of (gradient, variable) tuples. The outer list
- is over individual gradients. The inner list is over the gradient
- calculation for each tower.
- Returns:
- List of pairs of (gradient, variable) where the gradient has been averaged
- across all towers.
- """
- average_grads = []
- for grad_and_vars in zip(*tower_grads):
- # Note that each grad_and_vars looks like the following:
- # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
- grads = []
- for g, _ in grad_and_vars:
- # Add 0 dimension to the gradients to represent the tower.
- expanded_g = tf.expand_dims(g, 0)
- # Append on a 'tower' dimension which we will average over below.
- grads.append(expanded_g)
- # Average over the 'tower' dimension.
- grad = tf.concat(grads, 0)
- grad = tf.reduce_mean(grad, 0)
- # Keep in mind that the Variables are redundant because they are shared
- # across towers. So .. we will just return the first tower's pointer to
- # the Variable.
- v = grad_and_vars[0][1]
- grad_and_var = (grad, v)
- average_grads.append(grad_and_var)
- return average_grads
- def train():
- """Train CIFAR-10 for a number of steps."""
- with tf.Graph().as_default(), tf.device('/cpu:0'):
- # Create a variable to count the number of train() calls. This equals the
- # number of batches processed * FLAGS.num_gpus.
- global_step = tf.get_variable(
- 'global_step', [],
- initializer=tf.constant_initializer(0), trainable=False)
- # Calculate the learning rate schedule.
- num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
- batch_size)
- decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)
- # Decay the learning rate exponentially based on the number of steps.
- lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
- global_step,
- decay_steps,
- cifar10.LEARNING_RATE_DECAY_FACTOR,
- staircase=True)
- # Create an optimizer that performs gradient descent.
- opt = tf.train.GradientDescentOptimizer(lr)
- # Calculate the gradients for each model tower.
- tower_grads = []
- for i in range(num_gpus):
- with tf.device('/gpu:%d' % i):
- with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
- # Calculate the loss for one tower of the CIFAR model. This function
- # constructs the entire CIFAR model but shares the variables across
- # all towers.
- loss = tower_loss(scope)
- # Reuse variables for the next tower.
- tf.get_variable_scope().reuse_variables()
- # Retain the summaries from the final tower.
- # summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
- # Calculate the gradients for the batch of data on this CIFAR tower.
- grads = opt.compute_gradients(loss)
- # Keep track of the gradients across all towers.
- tower_grads.append(grads)
- # We must calculate the mean of each gradient. Note that this is the
- # synchronization point across all towers.
- grads = average_gradients(tower_grads)
- # Add a summary to track the learning rate.
- # summaries.append(tf.scalar_summary('learning_rate', lr))
- # Add histograms for gradients.
- # for grad, var in grads:
- # if grad is not None:
- # summaries.append(
- # tf.histogram_summary(var.op.name + '/gradients', grad))
- # Apply the gradients to adjust the shared variables.
- apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
- # Add histograms for trainable variables.
- # for var in tf.trainable_variables():
- # summaries.append(tf.histogram_summary(var.op.name, var))
- # Track the moving averages of all trainable variables.
- # variable_averages = tf.train.ExponentialMovingAverage(
- # cifar10.MOVING_AVERAGE_DECAY, global_step)
- # variables_averages_op = variable_averages.apply(tf.trainable_variables())
- # Group all updates to into a single train op.
- # train_op = tf.group(apply_gradient_op, variables_averages_op)
- # Create a saver.
- saver = tf.train.Saver(tf.all_variables())
- # Build the summary operation from the last tower summaries.
- # summary_op = tf.merge_summary(summaries)
- # Build an initialization operation to run below.
- init = tf.global_variables_initializer()
- # Start running operations on the Graph. allow_soft_placement must be set to
- # True to build towers on GPU, as some of the ops do not have GPU
- # implementations.
- sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
- sess.run(init)
- # Start the queue runners.
- tf.train.start_queue_runners(sess=sess)
- # summary_writer = tf.train.SummaryWriter(train_dir, sess.graph)
- for step in range(max_steps):
- start_time = time.time()
- _, loss_value = sess.run([apply_gradient_op, loss])
- duration = time.time() - start_time
- assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
- if step % 10 == 0:
- num_examples_per_step = batch_size * num_gpus
- examples_per_sec = num_examples_per_step / duration
- sec_per_batch = duration / num_gpus
- format_str = ('step %d, loss = %.2f (%.1f examples/sec; %.3f '
- 'sec/batch)')
- print (format_str % (step, loss_value,
- examples_per_sec, sec_per_batch))
- # if step % 100 == 0:
- # summary_str = sess.run(summary_op)
- # summary_writer.add_summary(summary_str, step)
- # Save the model checkpoint periodically.
- if step % 1000 == 0 or (step + 1) == max_steps:
- # checkpoint_path = os.path.join(train_dir, 'model.ckpt')
- saver.save(sess, '/tmp/cifar10_train/model.ckpt', global_step=step)
- cifar10.maybe_download_and_extract()
- #if tf.gfile.Exists(train_dir):
- # tf.gfile.DeleteRecursively(train_dir)
- #tf.gfile.MakeDirs(train_dir)
- train()
参考资料:
《TensorFlow实战》
欢迎付费咨询(150元每小时),我的微信:qingxingfengzi
学习笔记TF040:多GPU并行的更多相关文章
- Python Web学习笔记之并发和并行的区别和实现
你吃饭吃到一半,电话来了,你一直到吃完了以后才去接,这就说明你不支持并发也不支持并行.你吃饭吃到一半,电话来了,你停了下来接了电话,接完后继续吃饭,这说明你支持并发.你吃饭吃到一半,电话来了,你一边打 ...
- Go语言并发与并行学习笔记(一)
转:http://blog.csdn.net/kjfcpua/article/details/18265441 如果不是我对真正并行的线程的追求,就不会认识到Go有多么的迷人. Go语言从语言层面上就 ...
- Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)
0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windo ...
- JavaSE中线程与并行API框架学习笔记——线程为什么会不安全?
前言:休整一个多月之后,终于开始投简历了.这段时间休息了一阵子,又病了几天,真正用来复习准备的时间其实并不多.说实话,心里不是非常有底气. 这可能是学生时代遗留的思维惯性--总想着做好万全准备才去做事 ...
- Unity3D学习笔记6——GPU实例化(1)
目录 1. 概述 2. 详论 3. 参考 1. 概述 在之前的文章中说到,一种材质对应一次绘制调用的指令.即使是这种情况,两个三维物体使用同一种材质,但它们使用的材质参数不一样,那么最终仍然会造成两次 ...
- Unity3D学习笔记7——GPU实例化(2)
目录 1. 概述 2. 详论 2.1. 实现 2.2. 解析 3. 参考 1. 概述 在上一篇文章<Unity3D学习笔记6--GPU实例化(1)>详细介绍了Unity3d中GPU实例化的 ...
- Unity3D学习笔记8——GPU实例化(3)
目录 1. 概述 2. 详论 2.1. 自动实例化 2.2. MaterialPropertyBlock 3. 参考 1. 概述 在前两篇文章<Unity3D学习笔记6--GPU实例化(1)&g ...
- JavaSE中线程与并行API框架学习笔记1——线程是什么?
前言:虽然工作了三年,但是几乎没有使用到多线程之类的内容.这其实是工作与学习的矛盾.我们在公司上班,很多时候都只是在处理业务代码,很少接触底层技术. 可是你不可能一辈子都写业务代码,而且跳槽之后新单位 ...
- 【Unity Shaders】学习笔记——渲染管线
[Unity Shaders]学习笔记——Shader和渲染管线 转载请注明出处:http://www.cnblogs.com/-867259206/p/5595924.html 写作本系列文章时使用 ...
随机推荐
- Learning-MySQL【1】:数据库初识及 MySQL 的安装
一.什么是数据 数据(Data):描述事务的符号记录,描述事物的符号既可以是数字,也可以是文字.图片,图像.声音.语言等,数据由多种表现形式,它们都可以经过数字化后存入计算机 在计算机中描述一个事物, ...
- 代码覆盖率-JaCoCo
代码覆盖率 在做单元测试时,代码覆盖率常常被拿来作为衡量测试好坏的指标,甚至,用代码覆盖率来考核测试任务完成情况,比如,代码覆盖率必须达到80%或 90%. JaCoCo Jacoco从多种角度对代码 ...
- kafka在windows上的安装、运行
https://blog.csdn.net/u010283894/article/details/77106159 kafka 创建消费者报错 consumer zookeeper is not a ...
- Js异常的处理
博客1: https://segmentfault.com/a/1190000011481099 express中的异常处理:https://blog.fundebug.com/2017/12/06 ...
- CentOS7.5下安装Python3.7 --python3
1.将本地安装包上传到远程主机上 scp Python-3.7.0.tgz root@123.206.74.24:/root 2.扩展 安装Python之前安装Python相关的依赖包(主要是u红色部 ...
- 7.4 GRASP原则四:控制器 Controller
4.GRASP原则四:控制器 Controller What first object beyond the UI layer receives and co-ordinates (control ...
- 通用Mapper环境下,mapper接口无法注入问题
写了一个mapper接口 package com.nyist.mapper; import com.nyist.entity.User; import tk.mybatis.mapper.common ...
- Win10安装CAD2006
以管理员身份运行 提示如下问题: 查看该隐藏文件如下: 开始以为是未安装MSI Runtime 3.0和.NET Framework Runtime 1.1的原因,下载并安装后还是提示如上问题. 仔细 ...
- Solr安装使用教程
一.安装 1.1 安装jdk solr是基于lucene而lucene是java写的,所以solr需要jdk----当前安装的solr-7.5需要jdk-1.8及以上版本,下载安装jdk并设置JAVA ...
- ubuntu16.04中设置python3
执行: sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100 sudo update-alter ...