如何判断我们的线性回归模型是正确的?

1、回归诊断的基本方法
opar<-par(no.readOnly=TRUE)

fit <- lm(weight ~ height, data = women)
par(mfrow = c(2, 2))
plot(fit)
par(opar)

为理解这些图形,我们来回顾一下OLS回归的统计假设。
(1)正态性(主要使用QQ图) 当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布。正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值下,标准化残差的概率图。若满足正态假设,那么图上的点应该落在呈45度角的直线上;若不是如此,那么就违反了正态性的假设。
(2)独立性 你无法从这些图中分辨出因变量值是否相互独立,只能从收集的数据中来验证。上面的例子中,没有任何先验的理由去相信一位女性的体重会影响另外一位女性的体重。假若你发现数据是从一个家庭抽样得来的,那么可能必须要调整模型独立性的假设。
(3)线性(使用左上角的图,该曲线尽量拟合所有点) 若因变量与自变量线性相关,那么残差值与预测(拟合)值就没有任何系统关联。换句话说,除了白噪声,模型应该包含数据中所有的系统方差。在“残差图与拟合图”Residuals vs Fitted,左上)中可以清楚的看到一个曲线关系,这暗示着你可能需要对回归模型加上一个二次项。
(4)同方差性(左下角,点随机分布在曲线的周围) 若满足不变方差假设,那么在位置尺度图(Scale-Location Graph,左下)中,水平线周围的点应该随机分布。该图似乎满足此假设。最后一幅“残差与杠图”(Residuals vs Leverage,右下)提供了你可能关注的单个观测点的信息。从图形可以鉴别出离群点、高杠杆值点和强影响点

通过看图重新修改模型

newfit <- lm(weight ~ height + I(height^2), data = women[-c(13, 15),])
par(mfrow = c(2, 2))
plot(newfit)
par(opar)

2、使用改进的方法进行

主要使用的car包,进行回归诊断

(1)自变量的正态分布

qqPlot()函数提供了更为精确的正态假设检验方法

library(car)

fit <- lm(Murder ~ Population + Illiteracy + Income + 

Frost, data = states)
qqPlot(fit, labels = FALSE, simulate = TRUE, main = "Q-Q Plot")

(2)误差的独立性

durbinWatsonTest(fit)

lag Autocorrelation D-W Statistic p-value
   1      -0.2006929      2.317691   0.248
 Alternative hypothesis: rho != 0

(3)线性相关性

crPlots(fit, one.page = TRUE, ask = FALSE)

(4)同方差性

1、car包提供了两个有用的函数,可以判断误差方差是否恒定。ncvTest()函数生成一个计分检验,零假设为误差方差不变,备择假设为误差方差随着拟合值水平的变化而变化。

2、spreadLevelPlot()函数创建一个添加了最佳拟合曲线的散点图,展示标准化残差绝对值与拟合值的关系

library(car)
ncvTest(fit)

Non-constant Variance Score Test 
Variance formula: ~ fitted.values 
Chisquare = 1.746514    Df = 1     p = 0.1863156

满足方差不变 p = 0.1863156   
spreadLevelPlot(fit)

3、线性模型假设的综合验证

library(gvlma)
gvmodel <- gvlma(fit)
summary(gvmodel)

Call:
lm(formula = Murder ~ Population + Illiteracy + Income + Frost, 
    data = states)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.7960 -1.6495 -0.0811  1.4815  7.6210

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 1.235e+00  3.866e+00   0.319   0.7510    
Population  2.237e-04  9.052e-05   2.471   0.0173 *  
Illiteracy  4.143e+00  8.744e-01   4.738 2.19e-05 ***
Income      6.442e-05  6.837e-04   0.094   0.9253    
Frost       5.813e-04  1.005e-02   0.058   0.9541    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.535 on 45 degrees of freedom
Multiple R-squared:  0.567,     Adjusted R-squared:  0.5285 
F-statistic: 14.73 on 4 and 45 DF,  p-value: 9.133e-08

ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
Level of Significance =  0.05

Call:
 gvlma(x = fit) 
                    Value p-value                Decision
Global Stat        2.7728  0.5965 Assumptions acceptable.
Skewness           1.5374  0.2150 Assumptions acceptable.
Kurtosis           0.6376  0.4246 Assumptions acceptable.
Link Function      0.1154  0.7341 Assumptions acceptable.
Heteroscedasticity 0.4824  0.4873 Assumptions acceptable.

4、多重共线性

如何检测多重共线性

library(car)

vif(fit)

Population Illiteracy     Income      Frost 
  1.245282   2.165848   1.345822   2.082547 
sqrt(vif(fit)) > 2

Population Illiteracy     Income      Frost 
     FALSE      FALSE      FALSE      FALSE

如何解决多重共线性?

逐步回归法(此法最常用的,也最有效)

R语言回归分析中的异常值点的介绍

(1)离群点

如何识别离群点?

1、Q-Q图,落在置信区间带[-2,2]外的点即可被认为是离群点。

2、一个粗糙的判断准则:标准化残差值大于2或者小于2的点可能是离群

3、library(car)
   outlierTest(fit)  显示离群点

       rstudent unadjusted p-value Bonferonni p
Nevada 3.542929         0.00095088     0.047544

(2)高杠杆值点

它们是由许多异常的预测变量值组合起来的,与响应变量值没有关系

高杠杆值的观测点可通过帽子统计量(hat statistic)判断

hat.plot <- function(fit){
    p <- length(coefficients(fit))
    n <- length(fitted(fit))
    plot(hatvalues(fit), main = "Index Plot of Hat Values")
    abline(h = c(2, 3) * p/n, col = "red", lty = 2)
    identify(1:n, hatvalues(fit), names(hatvalues(fit)))
}
hat.plot(fit)

(3)强影响点

强影响点,即对模型参数估计值影响有些比例失衡的点。例如,若移除模型的一个观测点时模型会发生巨大的改变,那么你就需要检测一下数据中是否存在强影响点了

cutoff <- 4/(nrow(states) - length(fit$coefficients) - 2)
plot(fit, which = 4, cook.levels = cutoff)
abline(h = cutoff, lty = 2, col = "red")

4、如何对线性模型进行改进?

1、删除观测点;

删除离群点通常可以提高数据集对于正态假设的拟合度,而强影响点会干扰结果,通常也会被删除。删除最大的离群点或者强影响点后,模型需要重新拟合
2、变量变换:


Box-Cox正态变换

library(car)
summary(powerTransform(states$Murder))

library(car)
boxTidwell(Murder ~ Population + Illiteracy, data = states)
3、添加或删除变量;
4、
使用其他回归方法。

转载于:http://blog.csdn.net/u011955252

R语言中的回归诊断-- car包的更多相关文章

  1. R语言中的数据处理包dplyr、tidyr笔记

    R语言中的数据处理包dplyr.tidyr笔记   dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了 ...

  2. R语言中的机器学习包

    R语言中的机器学习包   Machine Learning & Statistical Learning (机器学习 & 统计学习)  网址:http://cran.r-project ...

  3. R语言·文本挖掘︱Rwordseg/rJava两包的安装(安到吐血)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- R语言·文本挖掘︱Rwordseg/rJava ...

  4. R+openNLP︱openNLP的六大可实现功能及其在R语言中的应用

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- openNLP是NLP中比较好的开源工具,R语 ...

  5. R语言︱文本挖掘——词云wordcloud2包

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者看到微信公众号探数寻理中提到郎大为Chif ...

  6. R语言︱文本挖掘之中文分词包——Rwordseg包(原理、功能、详解)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:与前面的RsowballC分词不同的 ...

  7. R语言中的字符处理

    R语言中的字符处理 (2011-07-10 22:29:48) 转载▼ 标签: r语言 字符处理 字符串 连接 分割 分类: R R的字符串处理能力还是很强大的,具体有base包的几个函数和strin ...

  8. R语言中样本平衡的几种方法

    R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性.在不平衡的数据中,任一算法都没法从样本量少的类中获取 ...

  9. R语言中动态安装库

    R语言中动态安装库 在一个R脚本中,我们使用了某些library,但是发现运行环境中没有这个library,如果能检测一下有没有这个包,没有就自动安装该多好.而R中非常方便地支持这些,只要联网. 代码 ...

随机推荐

  1. 解决资源id冲突

    --摘自<android插件化开发指南> 1.一套完整的Android App打包流程(Gradle方案) 第一步:aapt.为res目录下的资源生成R.java文件,同时为Android ...

  2. Codeforces 919D Substring 【拓扑排序】+【DP】

    <题目链接> 题目大意:有一个具有n个节点,m条边的有向图,每个点对应一个小写字母,现在给出每个顶点对应的字母以及有向边的连接情况,求经过的某一条路上相同字母出现的最多次数.如果次数无限大 ...

  3. POJ 1236 Network Of Schools 【Targan】+【缩点】

    <题目链接> 题目大意: 有N个学校,每个学校之间单向可以发送软件,现在给你一些学校之间的收发关系.问你下面两个问题:至少要给多少个学校发送软件才能使得最终所有学校都收到软件:至少要多加多 ...

  4. Mysql数据库报错:Cannot add or update a child row: a foreign key constraint fails(添加多对多关系)

    #创建班级表 class Classes(models.Model): title = models.CharField(max_length=32) n=models.ManyToManyField ...

  5. Mac终端下的svn使用教程

    1.将文件checkout到本地目录 1 svn checkout path(path是服务器上的目录) 2 例如:svn checkout svn://192.168.1.1/svn 3 简写:sv ...

  6. QLayout: Attempting to add QLayout XXX to XXX, which already has a layout

    QLayout是Qt应用开发中一个非常重要的组件,然而平时使用的时候不小心经常会发现控制台有类似如下的警告: QLayout: Attempting to add QLayout "&quo ...

  7. BUG——Celery ValueError: not enough values to unpack

    背景 最近因项目需要,学习任务队列Celery的用法,跟着官网写Demo,出现如题错误,最终在github的Issues里找到解决办法,记录如下. 场景还原 本地环境如下: Windows 7 Pyt ...

  8. BZOJ4867 : [Ynoi2017]舌尖上的由乃

    首先通过DFS序将原问题转化为序列上区间加.询问区间kth的问题. 考虑分块,设块大小为$K$,每块维护排序过后的$pair(值,编号)$. 对于修改,整块的部分可以直接打标记,而零碎的两块因为本来有 ...

  9. Django——权限

    在models中为user添加权限,permissions第二个参数可指定权限的别名 创建的各种用户user保存在auth_user表中 创建的各种用户user的对应权限permission_id保存 ...

  10. selenium3 文件系列之------ opencsv读取csv文件

    最近在学习selenium有关文件的读取测试,今天先总结一下如何读取csv文件.CSV的定义是与逗号分隔的值(Comma-Separated Values),在Java中需要用到第三方lib去处理读取 ...