题目大意:维护一个集合,支持单点修改、查询小于 X 的数的个数、查询小于 X 的数的和。

题解:学习到了动态开点线段树。对于一棵未经离散化的权值线段树来说,对于静态开点来说,过大的值域会导致不能承受的空间。还可以发现,对于每次修改操作只会涉及一条树链,即:\(O(logn)\) 个节点,因此总共所需的空间为 \(O(mlogn)\)。基于以上想法,采用动态开点的操作,即:该节点被修改,则动态地创建这个节点。反之,没有被用到的节点直接忽略掉即可。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e7+10;
const int mx=1e9+1; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} int n,m,a[maxn]; struct node{
#define ls(x) t[x].lc
#define rs(x) t[x].rc
int lc,rc,size;
long long sum;
}t[maxn<<1];
int tot,root;
inline void pushup(int o){
t[o].size=t[ls(o)].size+t[rs(o)].size;
t[o].sum=t[ls(o)].sum+t[rs(o)].sum;
}
void modify(int &o,int l,int r,int pos,int val){
if(!o)o=++tot;
if(l==r){t[o].size+=val,t[o].sum+=l*val;return;}
int mid=l+r>>1;
if(pos<=mid)modify(ls(o),l,mid,pos,val);
else modify(rs(o),mid+1,r,pos,val);
pushup(o);
}
long long querys(int o,int l,int r,int x,int y){
if(!o)return 0;
if(l==x&&r==y)return t[o].sum;
int mid=l+r>>1;
if(y<=mid)return querys(ls(o),l,mid,x,y);
else if(x>mid)return querys(rs(o),mid+1,r,x,y);
else return querys(ls(o),l,mid,x,mid)+querys(rs(o),mid+1,r,mid+1,y);
}
int querysz(int o,int l,int r,int x,int y){
if(!o)return 0;
if(l==x&&r==y)return t[o].size;
int mid=l+r>>1;
if(y<=mid)return querysz(ls(o),l,mid,x,y);
else if(x>mid)return querysz(rs(o),mid+1,r,x,y);
else return querysz(ls(o),l,mid,x,mid)+querysz(rs(o),mid+1,r,mid+1,y);
} void solve(){
n=read(),m=read();
char opt[2];
while(m--){
scanf("%s",opt);
if(opt[0]=='U'){
int pos=read(),val=read();
modify(root,0,mx,a[pos],-1);
modify(root,0,mx,a[pos]=val,1);
}else{
int c=read(),s=read();
int k=querysz(root,0,mx,s,mx);
long long sum=querys(root,0,mx,0,s-1);
puts(sum>=(long long)s*(c-k)?"TAK":"NIE");
}
}
} int main(){
solve();
return 0;
}

【洛谷P3586】LOG的更多相关文章

  1. 树状数组【洛谷P3586】 [POI2015]LOG

    P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...

  2. 洛谷 P3586 [POI2015]LOG

    P3586 [POI2015]LOG 题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它 ...

  3. 洛谷P3586 [POI2015]LOG(贪心 权值线段树)

    题意 题目链接 Sol 显然整个序列的形态对询问没什么影响 设权值\(>=s\)的有\(k\)个. 我们可以让这些数每次都被选择 那么剩下的数,假设值为\(a_i\)次,则可以\(a_i\)次被 ...

  4. 洛谷 P1890 gcd区间

    P1890 gcd区间 题目提供者 洛谷OnlineJudge 标签 数论(数学相关) 难度 普及/提高- 题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R] ...

  5. 洛谷 P3927 Factorial

    题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服,立刻就要算这个数在k进制表示下末尾0的个数. 但是SOL菌太菜了于是请 ...

  6. 洛谷 P3377 【模板】左偏树(可并堆)

    洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...

  7. 洛谷 P3370 【模板】字符串哈希

    洛谷 P3370 [模板]字符串哈希 题目描述 如题,给定N个字符串(第i个字符串长度为Mi,字符串内包含数字.大小写字母,大小写敏感),请求出N个字符串中共有多少个不同的字符串. 友情提醒:如果真的 ...

  8. 洛谷P4180 [Beijing2010组队]次小生成树Tree(最小生成树,LCT,主席树,倍增LCA,倍增,树链剖分)

    洛谷题目传送门 %%%TPLY巨佬和ysner巨佬%%% 他们的题解 思路分析 具体思路都在各位巨佬的题解中.这题做法挺多的,我就不对每个都详细讲了,泛泛而谈吧. 大多数算法都要用kruskal把最小 ...

  9. 洛谷P3434 [POI2006]KRA-The Disks(线段树)

    洛谷题目传送门 \(O(n)\)的正解算法对我这个小蒟蒻真的还有点思维难度.洛谷题解里都讲得很好. 考试的时候一看到300000就直接去想各种带log的做法了,反正不怕T...... 我永远只会有最直 ...

随机推荐

  1. 腾讯云COS体验

    其实这篇文章本来是推荐COS的,写了一半发现COS的免费额度取消了,2019年之后的开通的用户免费6个月,老用户不受影响,这还让我怎么推荐啊?!写都写了,删掉岂不是白浪费时间? 都怪你!腾讯云! 起因 ...

  2. 基于 CentOS 搭建 FTP 文件服务

    https://www.linuxidc.com/Linux/2017-11/148518.htm

  3. Map获取key值

    有两种方法 public static void test4(){ Map<String, Object> map = new HashMap<>(); map.put(&qu ...

  4. 《蹭课神器》Alpha版使用说明

    <蹭课神器>是一款方便大学生蹭课的软件,目前实现了查询课表的功能,还没有实现搜索和提醒的功能.有待进一步的开发! 登录之后点击查询操作,查询课表. 课表显示如下

  5. SVN解决冲突

    SVN冲突出现场景 如今是一个团结协作的时代,开发一个系统,往往会多人协作共同完成.版本管理是必不可少的,常用的软件有Git,SVN等.今天说一下,SVN管理版本时,如果出现冲突后,如何快速解决冲突. ...

  6. 第三个Sprint ------第三天

    出题界面代码 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns ...

  7. Fastdfs文件服务器搭建

    安装FastDFS之前,先安装libevent工具包.然后要安装libfastcommon和FastDFS,还要依赖nginx来显示图片. 1安装libevent yum -y install lib ...

  8. Flask-论坛开发-5-memcached缓存系统

    对Flask感兴趣的,可以看下这个视频教程:http://study.163.com/course/courseLearn.htm?courseId=1004091002 ### 介绍:哪些情况下适合 ...

  9. shell脚本--函数

    shell的函数和Javacript和php的函数声明一样,只不过shell在调用函数的时候,只需要写函数名就可以调用函数,注意不要在函数名后面加括号 创建并使用函数 #!/bin/bash #文件名 ...

  10. 【转帖】互联网加密及OpenSSL介绍和简单使用

    转帖:https://mritd.me/2016/07/02/%E4%BA%92%E8%81%94%E7%BD%91%E5%8A%A0%E5%AF%86%E5%8F%8AOpenSSL%E4%BB%8 ...