SPOJ GSS(Can you answer the Queries)系列 7/8
GSS1
线段树最大子段和裸题,不带修改,注意pushup。
然而并不会猫树之类的东西
#include<bits/stdc++.h> #define MAXN 50001 using namespace std; struct node{ int l , r , sum , lMax , rMax , midMax; }Tree[MAXN << ]; int a[MAXN] , rMax , allMax , N; inline int max(int a , int b){ return a > b ? a : b; } void init(int dir , int l , int r){ Tree[dir].l = l; Tree[dir].r = r; if(l == r) Tree[dir].lMax = Tree[dir].rMax = Tree[dir].midMax = Tree[dir].sum = a[l]; else{ init(dir << , l , (l + r) >> ); init(dir << | , ((l + r) >> ) + , r); Tree[dir].sum = Tree[dir << ].sum + Tree[dir << | ].sum; Tree[dir].lMax = max(Tree[dir << ].lMax , Tree[dir << ].sum + Tree[dir << | ].lMax); Tree[dir].rMax = max(Tree[dir << | ].rMax , Tree[dir << | ].sum + Tree[dir << ].rMax); Tree[dir].midMax = max(max(Tree[dir << ].midMax , Tree[dir << | ].midMax) , Tree[dir << ].rMax + Tree[dir << | ].lMax); } } void findMax(int dir , int l , int r){ if(Tree[dir].l >= l && Tree[dir].r <= r){ allMax = max(allMax , max(rMax + Tree[dir].lMax , Tree[dir].midMax)); rMax = max(max(Tree[dir].rMax , Tree[dir].sum + rMax) , ); return; } ) findMax(dir << , l , r); ) findMax(dir << | , l , r); } inline void work(int x , int y){ allMax = -0x7fffffff; rMax = ; findMax( , x , y); printf("%d\n" , allMax); } int main(){ scanf("%d" , &N); ; i <= N ; i++) scanf("%d" , a + i); init( , , N); int T; for(scanf("%d" , &T) ; T ; T--){ int a , b; scanf("%d%d" , &a , &b); work(a , b); } ; }
GSS1
GSS2
因为不是传统的最大子段和所以单独开了一页:Sol
GSS3
带修改的GSS1
其实也没什么区别只是莫名代码长了很多
#include<bits/stdc++.h> #define MAXN 50001 #define ll long long using namespace std; inline ll read(){ ll a = ; char c = getchar(); ; while(!isdigit(c)){ ; c = getchar(); } ) + (a << ) + (c ^ ') , c = getchar(); return f ? -a : a; } inline void print(ll x){ ] , dirN = ; ){ putchar('-'); x = -x; } while(x){ num[dirN++] = x % ; x /= ; } ) putchar('); ); putchar('\n'); } struct node{ ll l , r , lMax , rMax , sum , midMax; }Tree[MAXN << ]; ll num[MAXN] , N , nowMaxLeft , nowMax; inline ll max(ll a , ll b){return a > b ? a : b;} void build(ll dir , ll l , ll r){ Tree[dir].l = l; Tree[dir].r = r; if(l == r) Tree[dir].lMax = Tree[dir].rMax = Tree[dir].midMax = Tree[dir].sum = num[l]; else{ build(dir << , l , l + r >> ); build(dir << | , (l + r >> ) + , r); Tree[dir].lMax = max(Tree[dir << ].sum + Tree[dir << | ].lMax , Tree[dir << ].lMax); Tree[dir].rMax = max(Tree[dir << | ].sum + Tree[dir << ].rMax , Tree[dir << | ].rMax); Tree[dir].sum = Tree[dir << ].sum + Tree[dir << | ].sum; Tree[dir].midMax = max(Tree[dir << | ].lMax + Tree[dir << ].rMax , max(Tree[dir << ].midMax , Tree[dir << | ].midMax)); } } void change(ll dir , ll a , ll b){ if(Tree[dir].l == a && Tree[dir].r == a){ Tree[dir].lMax = Tree[dir].rMax = Tree[dir].midMax = Tree[dir].sum = b; return; } ) change(dir << | , a , b); , a , b); Tree[dir].lMax = max(Tree[dir << ].sum + Tree[dir << | ].lMax , Tree[dir << ].lMax); Tree[dir].rMax = max(Tree[dir << | ].sum + Tree[dir << ].rMax , Tree[dir << | ].rMax); Tree[dir].sum = Tree[dir << ].sum + Tree[dir << | ].sum; Tree[dir].midMax = max(Tree[dir << | ].lMax + Tree[dir << ].rMax , max(Tree[dir << ].midMax , Tree[dir << | ].midMax)); } void findMax(ll dir , ll a , ll b){ if(Tree[dir].l >= a && Tree[dir].r <= b){ nowMax = max(nowMax , max(max(nowMaxLeft , ) + Tree[dir].lMax , Tree[dir].midMax)); nowMaxLeft = max(nowMaxLeft + Tree[dir].sum , Tree[dir].rMax); return; } ) findMax(dir << , a , b); ) findMax(dir << | , a , b); } int main(){ N = read(); ; i <= N ; i++) num[i] = read(); build( , , N); register int a , b , M = read(); while(M--) ){ a = read(); b = read(); nowMaxLeft = nowMax = -0x7f7f7f7f; findMax( , a , b); print(max(nowMax , nowMaxLeft)); } else{ a = read(); b = read(); change( , a , b); } ; }
GSS3
GSS4
话说这东西似乎叫做势能线段树?
$10^{18}$开$6-7$次根就会变成$1$,而$\sqrt{1} = 1$,所以我们可以建一棵这样子的线段树:最开始几次修改暴力到叶子节点进行修改,在之后的某一次修改中,如果某一个节点所表示的区间中所有数就变成了$1$,就不往下走
#include<bits/stdc++.h> #define MAXN 100010 #define int unsigned long long using namespace std; inline int read(){ ; char c = getchar(); while(c != EOF && !isdigit(c)) c = getchar(); while(c != EOF && isdigit(c)){ a = (a << ) + (a << ) + (c ^ '); c = getchar(); } return a; } struct node{ int sum; bool f; }Tree[MAXN << ]; inline void pushup(int now){ Tree[now].sum = Tree[now << ].sum + Tree[now << | ].sum; Tree[now].f = Tree[now << ].f && Tree[now << | ].f; } void init(int now , int l , int r){ if(l == r){ Tree[now].sum = read(); Tree[now].f = Tree[now].sum == ; return; } init(now << , l , l + r >> ); init(now << | , (l + r >> ) + , r); pushup(now); } void change(int now , int l , int r , int L , int R){ if(Tree[now].f) return; if(l == r){ Tree[now].sum = sqrt(Tree[now].sum); Tree[now].f = Tree[now].sum == ; return; } >= L) change(now << , l , l + r >> , L , R); < R) change(now << | , (l + r >> ) + , r , L , R); pushup(now); } int getAns(int now , int l , int r , int L , int R){ if(l >= L && r <= R) return Tree[now].sum; ; >= L) sum += getAns(now << , l , l + r >> , L , R); < R) sum += getAns(now << | , (l + r >> ) + , r , L , R); return sum; } main() { ios::sync_with_stdio(); cin.tie(); cout.tie(); ; while((N = read()) && N){ init( , , N); cout << "Case #" << ++c << ":" << endl; for(int M = read() ; M ; M--) ){ int a = read() , b = read(); if(a > b) swap(a , b); change( , , N , a , b); } else{ int a = read() , b = read(); if(a > b) swap(a , b); cout << getAns( , , N , a , b) << endl; } cout << endl; } ; }
GSS4
GSS5
设左区间为$[a,b]$,右区间为$[c,d]$,满足$b \geq c$
分类讨论:
①左端点在$[a,c)$,答案为$[a,c)$的最大后缀与$[c,d]$的最大前缀
②右端点在$(b,d]$,答案为$[a,b]$的最大后缀与$(b,d]$的最大前缀
③左右端点都在$[b,c]$,答案为$[b,c]$的最大子段和
#include<bits/stdc++.h> #define MAXN 10001 using namespace std; inline int max(int a , int b){ return a > b ? a : b; } inline int min(int a , int b){ return a < b ? a : b; } struct node{ int l , r , lMax , rMax , midMax , sum; }Tree[MAXN << ]; int a[MAXN] , N , lMax , rMax , allMax; void init(int dir , int l , int r){ Tree[dir].l = l; Tree[dir].r = r; if(l == r) Tree[dir].lMax = Tree[dir].rMax = Tree[dir].midMax = Tree[dir].sum = a[l]; else{ init(dir << , l , (l + r) >> ); init(dir << | , ((l + r) >> ) + , r); Tree[dir].sum = Tree[dir << ].sum + Tree[dir << | ].sum; Tree[dir].lMax = max(Tree[dir << ].lMax , Tree[dir << ].sum + Tree[dir << | ].lMax); Tree[dir].rMax = max(Tree[dir << | ].rMax , Tree[dir << ].rMax + Tree[dir << | ].sum); Tree[dir].midMax = max(Tree[dir << ].rMax + Tree[dir << | ].lMax , max(Tree[dir << ].midMax , Tree[dir << | ].midMax)); } } int findSum(int dir , int l , int r){ if(Tree[dir].l >= l && Tree[dir].r <= r) return Tree[dir].sum; ; ) sum += findSum(dir << , l , r); ) sum += findSum(dir << | , l , r); return sum; } void findRightMax(int dir , int l , int r){ if(Tree[dir].l >= l && Tree[dir].r <= r){ allMax = max(allMax , Tree[dir].rMax + rMax); rMax += Tree[dir].sum; return; } ) findRightMax(dir << | , l , r); ) findRightMax(dir << , l , r); } void findLeftMax(int dir , int l , int r){ if(Tree[dir].l >= l && Tree[dir].r <= r){ allMax = max(allMax , Tree[dir].lMax + lMax); lMax += Tree[dir].sum; return; } ) findLeftMax(dir << , l , r); ) findLeftMax(dir << | , l , r); } void findMax(int dir , int l , int r){ if(Tree[dir].l >= l && Tree[dir].r <= r){ allMax = max(allMax , max(Tree[dir].lMax + rMax , Tree[dir].midMax)); rMax = max( , max(Tree[dir].sum + rMax , Tree[dir].rMax)); return; } ) findMax(dir << , l , r); ) findMax(dir << | , l , r); } inline int getAns(int a , int b , int c , int d){ ; < c) t += findSum( , b + , c - ); if(a <= b){ allMax = -0x7fffffff; rMax = ; findRightMax( , a , b); t += allMax; } if(c <= d){ allMax = -0x7fffffff; lMax = ; findLeftMax( , c , d); t += allMax; } return t; } inline int work(int a , int b , int c , int d){ c = max(a , c); b = min(b , d); if(b < c) return getAns(a , b , c , d); else{ allMax = -0x7fffffff; rMax = ; findMax( , c , b); int t = allMax; , c , d) , getAns(c , b , b + , d)) , t); } } int main(){ int T; for(cin >> T ; T ; T--){ cin >> N; ; i <= N ; i++) cin >> a[i]; init( , , N); int M; for(cin >> M ; M ; M--){ int a , b , c , d; cin >> a >> b >> c >> d; printf("%d\n" , work(a , b , c , d)); } } ; }
GSS5
GSS6
维护数列削弱版本
因为$remove$的一个智障失误调了$3h$
#include<bits/stdc++.h> #define root Tree[0].ch[0] #define lch Tree[x].ch[0] #define rch Tree[x].ch[1] #define INF 0x3f3f3f3f //This code is written by Itst using namespace std; inline int max(int a , int b){ return a > b ? a : b; } inline int min(int a , int b){ return a < b ? a : b; } inline int read(){ ; ; char c = getchar(); while(c != EOF && !isdigit(c)){ if(c == '-') f = ; c = getchar(); } while(c != EOF && isdigit(c)){ a = (a << ) + (a << ) + (c ^ '); c = getchar(); } return f ? -a : a; } ]; inline void print(int x){ ){ putchar('-'); x = -x; } if(!x) putchar('); ; while(x){ output[dirN++] = x % + ; x /= ; } while(dirN) putchar(output[--dirN]); putchar('\n'); } ; struct node{ ] , allMax , lMax , rMax , val , sum; }Tree[MAXN]; int num[MAXN] , N , cntNode , y , z , w; inline bool son(const int& x){ ] == x; } void pushup(int x){ Tree[x].lMax = max(Tree[lch].lMax , Tree[lch].sum + Tree[x].val + max(Tree[rch].lMax , )); Tree[x].rMax = max(Tree[rch].rMax , Tree[rch].sum + Tree[x].val + max(Tree[lch].rMax , )); Tree[x].allMax = max(max(Tree[lch].allMax , Tree[rch].allMax) , max(Tree[lch].rMax , ) + max(Tree[rch].lMax , ) + Tree[x].val); Tree[x].sum = Tree[lch].sum + Tree[rch].sum + Tree[x].val; Tree[x].size = Tree[lch].size + Tree[rch].size + ; } inline void ZigZag(int x){ bool f = son(x); y = Tree[x].fa; z = Tree[y].fa; w = Tree[x].ch[f ^ ]; Tree[z].ch[son(y)] = x; Tree[x].fa = z; Tree[x].ch[f ^ ] = y; Tree[y].fa = x; Tree[y].ch[f] = w; if(w) Tree[w].fa = y; pushup(y); } inline void Splay(int x , int tar){ while(Tree[x].fa != tar){ if(Tree[Tree[x].fa].fa != tar) ZigZag(son(x) == son(Tree[x].fa) ? Tree[x].fa : x); ZigZag(x); } pushup(x); } void insert(int& x , int fa , int rk , int val){ if(!x){ x = ++cntNode; Tree[x].fa = fa; Tree[x].lMax = Tree[x].rMax = Tree[x].allMax = Tree[x].val = Tree[x].sum = val; Tree[x].size = ; Splay(x , ); return; } if(rk > Tree[lch].size) insert(rch , x , rk - Tree[lch].size - , val); else insert(lch , x , rk , val); } void getKth(int x , int rk , int tar){ if(rk == Tree[lch].size) Splay(x , tar); else if(rk > Tree[lch].size) getKth(rch , rk - Tree[lch].size - , tar); else getKth(lch , rk , tar); } inline void remove(int rk){ getKth(root , rk , ); getKth(root , rk - , root); int t = root; root = Tree[t].ch[]; Tree[root].ch[] = Tree[t].ch[]; Tree[root].fa = ; Tree[Tree[t].ch[]].fa = root; pushup(Tree[t].ch[]); } inline void change(int rk , int val){ getKth(root , rk , ); Tree[root].val = val; pushup(root); } inline void query(int l , int r){ getKth(root , l - , ); getKth(root , r + , root); print(Tree[Tree[Tree[root].ch[]].ch[]].allMax); } inline char getc(){ char c = getchar(); while(!isupper(c)) c = getchar(); return c; } int main(){ #ifndef ONLINE_JUDGE freopen("4487.in" , "r" , stdin); freopen("4487.out" , "w" , stdout); #endif insert(root , , , ); insert(root , , , ); Tree[].allMax = Tree[].allMax = Tree[].allMax = -INF; N = read(); ; i <= N ; ++i) insert(root , , i , read()); int a , b; for(register int M = read() ; M ; --M){ ].fa) Tree[].fa = ; switch(getc()){ case 'I': a = read(); b = read(); insert(root , , a , b); break; case 'D': remove(read()); break; case 'R': a = read(); b = read(); change(a , b); break; case 'Q': a = read(); b = read(); query(a , b); break; } } ; }
GSS6
GSS7
树剖+最大子段和
实际上也没什么区别只是莫名码量大了非常多
#include<bits/stdc++.h> #define MAXN 100001 using namespace std; inline int read(){ ; ; char c = getchar(); while(!isdigit(c)){ if(c == '-') f = ; c = getchar(); } while(isdigit(c)){ a = (a << ) + (a << ) + (c ^ '); c = getchar(); } return f ? -a : a; } ]; inline void print(int x){ ; ) fwrite( , stdout); else{ ){ x = -x; fwrite( , stdout); } while(x){ output[--dirN] = x % + ; x /= ; } fwrite(output + dirN , , strlen(output + dirN) , stdout); } fwrite( , , stdout); } struct node{ int l , r , lMax , rMax , midMax , sum , mark; }Tree[MAXN << ]; struct Edge{ int end , upEd; }Ed[MAXN << ]; int val[MAXN] , head[MAXN] , size[MAXN] , son[MAXN] , fa[MAXN] , dep[MAXN]; int top[MAXN] , ind[MAXN] , rk[MAXN] , N , ts , cntEd , allMax , lMax , rMax; inline void addEd(int a , int b){ Ed[++cntEd].end = b; Ed[cntEd].upEd = head[a]; head[a] = cntEd; } void dfs1(int dir , int father){ size[dir] = ; dep[dir] = dep[fa[dir] = father] + ; for(int i = head[dir] ; i ; i = Ed[i].upEd) if(!dep[Ed[i].end]){ dfs1(Ed[i].end , dir); size[dir] += size[Ed[i].end]; if(size[son[dir]] < size[Ed[i].end]) son[dir] = Ed[i].end; } } void dfs2(int dir , int t){ top[dir] = t; rk[ind[dir] = ++ts] = dir; if(!son[dir]) return; dfs2(son[dir] , t); for(int i = head[dir] ; i ; i = Ed[i].upEd) if(Ed[i].end != son[dir] && Ed[i].end != fa[dir]) dfs2(Ed[i].end , Ed[i].end); } inline void pushup(int dir){ Tree[dir].lMax = max(Tree[dir << ].lMax , Tree[dir << ].sum + Tree[dir << | ].lMax); Tree[dir].rMax = max(Tree[dir << | ].rMax , Tree[dir << ].rMax + Tree[dir << | ].sum); Tree[dir].sum = Tree[dir << ].sum + Tree[dir << | ].sum; Tree[dir].midMax = max(max(Tree[dir << ].midMax , Tree[dir << | ].midMax) , Tree[dir << ].rMax + Tree[dir << | ].lMax); } inline void pushdown(int dir){ ){ Tree[dir << ].lMax = Tree[dir << ].rMax = Tree[dir << ].midMax = max(Tree[dir << ].sum = Tree[dir].mark * (Tree[dir << ].r - Tree[dir << ].l + ) , ); Tree[dir << | ].lMax = Tree[dir << | ].rMax = Tree[dir << | ].midMax = max(Tree[dir << | ].sum = Tree[dir].mark * (Tree[dir << | ].r - Tree[dir << | ].l + ) , ); Tree[dir << ].mark = Tree[dir << | ].mark = Tree[dir].mark; Tree[dir].mark = -; } } void init(int dir , int l , int r){ Tree[dir].l = l; Tree[dir].r = r; Tree[dir].mark = -; if(l == r) Tree[dir].lMax = Tree[dir].rMax = Tree[dir].midMax = max(Tree[dir].sum = val[rk[l]] , ); else{ init(dir << , l , (l + r) >> ); init(dir << | , ((l + r) >> ) + , r); pushup(dir); } } void change(int dir , int l , int r , int val){ if(Tree[dir].l >= l && Tree[dir].r <= r){ Tree[dir].lMax = Tree[dir].rMax = Tree[dir].midMax = max(Tree[dir].sum = (Tree[dir].mark = val) * (Tree[dir].r - Tree[dir].l + ) , ); return; } pushdown(dir); ) change(dir << , l , r , val); ) change(dir << | , l , r , val); pushup(dir); } void askLeft(int dir , int l , int r){ if(Tree[dir].l >= l && Tree[dir].r <= r){ allMax = max(allMax , max(lMax + Tree[dir].rMax , Tree[dir].midMax)); lMax = max(Tree[dir].lMax , Tree[dir].sum + lMax); return; } pushdown(dir); ) askLeft(dir << | , l , r); ) askLeft(dir << , l , r); } void askRight(int dir , int l , int r){ if(Tree[dir].l >= l && Tree[dir].r <= r){ allMax = max(allMax , max(rMax + Tree[dir].rMax , Tree[dir].midMax)); rMax = max(Tree[dir].lMax , Tree[dir].sum + rMax); return; } pushdown(dir); ) askRight(dir << | , l , r); ) askRight(dir << , l , r); } inline void work1(int l , int r , int val){ int tl = top[l] , tr = top[r]; while(tl != tr) if(dep[tl] >= dep[tr]){ change( , ind[tl] , ind[l] , val); tl = top[l = fa[tl]]; } else{ change( , ind[tr] , ind[r] , val); tr = top[r = fa[tr]]; } if(ind[l] < ind[r]) change( , ind[l] , ind[r] , val); else change( , ind[r] , ind[l] , val); } inline void work2(int l , int r){ allMax = lMax = rMax = ; int tl = top[l] , tr = top[r]; while(tl != tr) if(dep[tl] >= dep[tr]){ askLeft( , ind[tl] , ind[l]); tl = top[l = fa[tl]]; } else{ askRight( , ind[tr] , ind[r]); tr = top[r = fa[tr]]; } if(ind[l] < ind[r]) askRight( , ind[l] , ind[r]); else askLeft( , ind[r] , ind[l]); print(max(allMax , lMax + rMax)); } int main(){ N = read(); ; i <= N ; i++) val[i] = read(); ; i < N ; i++){ int a = read() , b = read(); addEd(a , b); addEd(b , a); } dfs1( , ); dfs2( , ); init( , , N); for(int Q = read() ; Q ; Q--){ int a = read() , b = read() , c = read(); ) work1(b , c , read()); else work2(b , c); } ; }
GSS7
SPOJ GSS(Can you answer the Queries)系列 7/8的更多相关文章
- SPOJ GSS3 Can you answer these queries III[线段树]
SPOJ - GSS3 Can you answer these queries III Description You are given a sequence A of N (N <= 50 ...
- GSS7 spoj 6779. Can you answer these queries VII 树链剖分+线段树
GSS7Can you answer these queries VII 给出一棵树,树的节点有权值,有两种操作: 1.询问节点x,y的路径上最大子段和,可以为空 2.把节点x,y的路径上所有节点的权 ...
- GSS3 SPOJ 1716. Can you answer these queries III gss1的变形
gss2调了一下午,至今还在wa... 我的做法是:对于询问按右区间排序,利用splay记录最右的位置.对于重复出现的,在splay中删掉之前出现的位置所在的节点,然后在splay中插入新的节点.对于 ...
- [题解] SPOJ GSS1 - Can you answer these queries I
[题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...
- SPOJ GSS1 - Can you answer these queries I(线段树维护GSS)
Can you answer these queries I SPOJ - GSS1 You are given a sequence A[1], A[2], -, A[N] . ( |A[i]| ≤ ...
- GSS1 spoj 1043 Can you answer these queries I 最大子段和
今天下午不知道要做什么,那就把gss系列的线段树刷一下吧. Can you answer these queries I 题目:给出一个数列,询问区间[l,r]的最大子段和 分析: 线段树简单区间操作 ...
- SPOJ 1557. Can you answer these queries II 线段树
Can you answer these queries II Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://www.spoj.com/pr ...
- bzoj 2482: [Spoj GSS2] Can you answer these queries II 线段树
2482: [Spoj1557] Can you answer these queries II Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 145 ...
- spoj 4487. Can you answer these queries VI (gss6) splay 常数优化
4487. Can you answer these queries VI Problem code: GSS6 Given a sequence A of N (N <= 100000) in ...
随机推荐
- CSS expression属性
expression属性是在IE5版本之后支持使用的,用来把CSS属性和JavaScript脚本关联起来.简单粗暴的说,该属性是用来调用JavaScript代码的. CSS属性后面是一段JavaScr ...
- BeanFactory和ApplicationContext的比较
1.BeanFactory实例化后,不会马上实例化Bean:ApplicationContext在实例化后紧跟着就会实例化Bean 2.ApplicationContext还实现了ResourceLo ...
- 如何打jar包
一.制作只含有字节码文件的jar包1.最简单的jar包——直接输出hello2.含有两个类的jar包——通过调用输出hello3.有目录结构的jar包——通过引包并调用输出hello 二.制作含有ja ...
- chrome新版打开新标签页自动打开谷歌主页
最近更新了chrome,发现新版有个问题. 打开标签页时会自动跳转至 https://www.google.com/webhp?ie=UTF-8&gws_rd=cr&rct=j 导致我 ...
- 简单易懂的程序语言入门小册子(3):基于文本替换的解释器,let表达式,布尔类型,if表达式
let表达式 let表达式用来声明一个变量. 比如我们正在写一个模拟掷骰子游戏的程序. 一个骰子有6个面. 所以这个程序多次用到了6这个数字. 有一天,我们忽然改变主意,要玩12个面的骰子. 于是我们 ...
- Servlet (HttpServletResponse)对象
1.setStatus(int status)方法:用于设置HTTP响应消息的状态码,并生成响应状态行.响应状态行中的状态描述信息直接与状态码相关,HTTP版本由服务器确定,因此只需要通过这个方法设置 ...
- Python & 机器学习之项目实践
机器学习是一项经验技能,经验越多越好.在项目建立的过程中,实践是掌握机器学习的最佳手段.在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的. 预测模型项目模板不能 ...
- CTR预估中GBDT与LR融合方案
1. 背景 CTR预估(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic R ...
- Lua与C交互之基础操作(1)
@(语言) Lua是一个嵌入式的语言,可以Lua可以作为程序库用来扩展应用的功能,也可以注册有其他语言实现的函数,这些函数可能由C语言(或其他语言)实现,可以增加一些不容易由Lua实现的功能.这就是L ...
- 【SDOI2009】Bill的挑战
Description Sheng bill不仅有惊人的心算能力,还可以轻松地完成各种统计.在昨天的比赛中,你凭借优秀的程序与他打成了平局,这导致Sheng bill极度的不满.于是他再次挑战你.这次 ...