Matching Networks for One Shot Learning
1. Introduction
In this work, inspired by metric learning based on deep neural features and memory augment neural networks, authors propose matching networks that map a small labelled support set and an unlabelled example to its label. Then they define one-shot learning problems on vision and language tasks and obtain an improving one-shot accuracy on ImageNet and Omnight. The novelty of their work is twofold: at the modeling level, and at the training procedure.
2. Model
Their non-parametric approach to solving one-shot is based on two components. First, the model architecture follows recent advances in neural networks augmented with memory. Given a support set $S$, the model difines a function $c_S$(or classifier) for each $S$ Sencond, we employ a training strategy which is tailored for one-shot learning from the support set $S$
2.1 Model Architecture
Matching Networks are able to produce sensible test labels for unobserved classes without any changes to the network. We wish to map from a support set of $k$ examples of images-label pairs $S={(x_i,y_i)}_{i=1}^k$ to a classfier $c_S(\hat{x})$ which,given a test example $\hat{x}$, defines a probability distribution over outputs $\hat{y}$. Furthmore, difine the mapping $S\rightarrow c_S(\hat{x})$ to be $P(\hat{y} \mid \hat{x},S)$ where $P$ is parameterised by a neural network. Thus, When given a new support set of examples $S'$ from which to one-shot learn, we simply use the parametric neural network defined by $P$ to make predictions about the appropriate label $\hat{y}$ for each test example $\hat{x}$: $P(\hat{y} \mid \hat{x},S')$. In general, our predicted output class for a given input unseen example $\hat{x}$ and a support set $S$ becomes $arg \max_y P(y\mid \hat{x},S)$. The model in its simplest form computes $\hat{y}$ as follows:
$$ \hat{y}=\sum_{i=1}^k a(\hat{x},x_i)y_i $$
where $x_i,y_i$ are the samples and labels from the support set $S=\{(x_i,y_i)\}_{i=1}^k$, and $a$ is an attention mechanism. Here,the attention kernel function is the softmax over the cosine distance. $$ a(\hat{x},x_i)=\frac{e^{c(f(\hat{x}),g(x_i))}}{\sum_{j=1}^k e^{c(f(\hat{x}),g(x_j))}} $$ where embeding functions $f$ and $g$ are, actually, appropriate neural networks to embed $\hat{x}$ and $x_i$
2.2 Training Strategy
Let us define a tast $T$ as distribution over possible label sets $L$. To form an “episode” to compute gradients and update our model, we first sample $L$ from $T$(e.g.,$L$ could be the label set {cats; dogs}). We then use $L$ to sample the support set $S$ and a batch $B$ (i.e., both $S$ and $B$ are labelled examples of cats and dogs). The Matching Net is then trained to minimise the error predicting the labels in the batch B conditioned on the support set $S$. This is a form of meta-learning since the training procedure explicitly learns to learn from a given support set to minimise a loss over a batch. More precisely, the Matching Nets training objective is as follows:
$$ \theta = arg\max_{\theta}E_{L\sim T}\Big[E_{S\sim L,B\sim L}\Big[\sum_{(x,y)\in B}\log P_{\theta}(y\mid x,S)\Big]\Big] $$
Training $\theta$ with this objective function yields a model which works well when sampling $S'\sim T'$ from a different distribution of novel labels
3. Appendix
3.1 The Fully Conditional Embedding $f$
The embedding function for an example $\hat{x}$ in the batch $B$ is as follows:
$$ f(\hat{x},S)=attLSTM(f'(\hat{x}),g(S),K) $$
where $f'$ is a neural network. $K$ is the number of "processing" steps following work. $g(S)$ represents the embedding function $g$ applied to each element $x_i$ from the set $S$. Thus, the state after $k$ processing steps is as follows:
$$ \hat{h}_k,c_k = LSTM(f'(\hat{x}),[h_{k-1},r_{k-1}],c_{k-1}) $$
$$ h_k = \hat{h}_k+f'(\hat{x}) $$
$$ r_{k-1}=\sum_{i=1}^{|S|}a(h_{k-1},g(x_i))g(x_i) $$
$$ a(h_{k-1},g(x_i))=softmax(h_{k-1}^Tg(x_i)) $$
3.2 The Fully Conditional Embedding $g$
The encoding function for the elements in the support set $S$, $g(x_i,S)$ as a bidirectional LSTM. Let g'(x_i) be a neural network, then we difine $g(x_i,S)=\vec{h}_i+h_i^{\leftarrow}+g'(x_i)$ with:
$$ \vec{h}_i,\vec{c}_i=LSTM(g'(x_i),\vec{h}_{i-1},\vec{c}_{i-1}) $$
$$ h_i^{\leftarrow},c_i^{\leftarrow}=LSTM(g'(x_i),h_{i+1}^{\leftarrow},c_{i+1}^{\leftarrow}) $$
Reference: https://arxiv.org/abs/1606.04080
Matching Networks for One Shot Learning的更多相关文章
- (转)Paper list of Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning
Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning 2018-08-03 19:16:56 本文转自:http ...
- Multi-attention Network for One Shot Learning
Multi-attention Network for One Shot Learning 2018-05-15 22:35:50 本文的贡献点在于: 1. 表明类别标签信息对 one shot l ...
- (六)6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- 论文笔记系列-Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves
I. 背景介绍 1. 学习曲线(Learning Curve) 我们都知道在手工调试模型的参数的时候,我们并不会每次都等到模型迭代完后再修改超参数,而是待模型训练了一定的epoch次数后,通过观察学习 ...
- CS229 6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- 零样本学习 - (Zero shot learning,ZSL)
https://zhuanlan.zhihu.com/p/41846072 https://zhuanlan.zhihu.com/p/38418698 https://zhuanlan.zhihu.c ...
- 18 Issues in Current Deep Reinforcement Learning from ZhiHu
深度强化学习的18个关键问题 from: https://zhuanlan.zhihu.com/p/32153603 85 人赞了该文章 深度强化学习的问题在哪里?未来怎么走?哪些方面可以突破? 这两 ...
- (zhuan) Where can I start with Deep Learning?
Where can I start with Deep Learning? By Rotek Song, Deep Reinforcement Learning/Robotics/Computer V ...
- Few-Shot/One-Shot Learning
Few-Shot/One-Shot Learning指的是小样本学习,目的是克服机器学习中训练模型需要海量数据的问题,期望通过少量数据即可获得足够的知识. Matching Networks for ...
随机推荐
- Kubernetes Service Account如何生成Token
Service Account是运行pods用到的帐号,默认是default.如果apiserver启动配置--admission-control=ServiceAccount,Service Acc ...
- Android - 简单listview
//MainActivity.java package com.example.zc.listviewdemo; import android.support.v7.app.AppCompatActi ...
- .net core 中间件实战
1.新建一个ASP.NET Core Web Application项目,选择空模板. 2.新建一个类RequestIPMiddleware.cs using Microsoft.AspNetCore ...
- 第二章 FFmpeg常用命令
2.1 FFmpeg常见的命令大概分为6个部分 ffmpeg信息查询部分 公共操作参数部分 文件主要操作参数部分 视频操作参数部分 字幕操作参数部分 2.1.1 FFmpeg的封装转换 FFmpeg ...
- How to identify safari in Mac?
How to identify safari in Mac?in userAgent, find keywords below1) and: Macintosh, Mac OS X, AppleWeb ...
- H5的本地存储技术及其与Cookie的比较
第一部分: H5的本地存储技术 HTML5 提供了两种在客户端存储数据的新方法.先看下面的例子: 例1:var mySelection = {name:"car", amount: ...
- 清除UIWebView缓存
//清除cookies NSHTTPCookie *cookie; NSHTTPCookieStorage *storage = [NSHTTPCookieStorage sharedHTTPCook ...
- leetcode每日刷题计划-简单篇day1
orzorz开始刷题 争取坚持每周平均下来简单题一天能做两道题吧 非常简单的题奇奇怪怪的错误orz越不做越菜 Num 7 整数反转 Reverse Integer 刚开始多给了一个变量来回折腾占地方, ...
- 开源项目初涉(C++自我学习开始)
版权声明:本文为博主原创文章,未经博主允许不得转载. https://i.cnblogs.com/EditPosts.aspx?postid=8428885 临近2018农历新年,我还在上班,哈哈. ...
- (4)网络配置及CRT远程连接
修改linux虚拟机中某一网卡的网络配置: 打开终端,输入命令vi /etc/sysconfig/network-scripts/ifcfg-eth0 在文件中写入以下内容: (这里有个错误,DNS要 ...