机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

同样是预测房价问题  如果有多个特征值

那么这种情况下  假设h表示为 

公式可以简化为

两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样

那么他的代价函数就是

同样是寻找使J最小的一系列参数

python代码为

比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1   这个函数返回值为0最小      theta0 = 0 theta1=0的话  返回值是2.333

要考虑是否需要特征缩放,特征缩放就是特征分配不均时   会导致梯度下降耗费更多  为了让梯度下降更快

所以

如何选择学习率α呢

梯度下降算法的每次迭代受到学习率的影响,如果学习率 过小,则达到收敛所需的迭代次数会非常高,如果学习率过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。

通常可以考虑尝试些学习率:0.01,0.03,0.3,1,3,10

而有的时候线性回归并不适用于所有的模型,这个时候我们要考虑用多项式模型

这个时候特征缩放就很重要

梯度下降  线性回归的python代码

# -*- coding=utf8 -*-

import math;

def sum_of_gradient(x, y, thetas):
"""计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数"""
m = len(x);
grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)])
grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) * x[i] for i in range(m)])
return [grad0, grad1];

def step(thetas, direction, step_size):
"""move step_size in the direction from thetas"""
return [thetas_i + step_size * direction_i
for thetas_i, direction_i in zip(thetas, direction)]

def distance(v, w):
"""两点的距离"""
return math.sqrt(squared_distance(v, w))

def squared_distance(v, w):
vector_subtract = [v_i - w_i for v_i, w_i in zip(v, w)]
return sum(vector_subtract_i * vector_subtract_i for vector_subtract_i, vector_subtract_i
in zip(vector_subtract, vector_subtract))

def gradient_descent(stepSize, x, y, tolerance=0.000000001, max_iter=100000):
"""梯度下降"""
iter = 0
# initial theta
thetas = [0, 0];
# Iterate Loop
while True:
gradient = sum_of_gradient(x, y, thetas);

next_thetas = step(thetas, gradient, stepSize);

if distance(next_thetas, thetas) < tolerance: # stop if we're converging
break
thetas = next_thetas # continue if we're not

iter += 1 # update iter

if iter == max_iter:
print 'Max iteractions exceeded!'
break;

return thetas

x = [1, 2, 3];
y = [5, 9, 13];
stepSize = 0.001;
t0, t1 = gradient_descent(-stepSize, x, y);
print t0, " ", t1;

线性回归还有一种更简单的  就是正规方程

这个是用数学推导出来的

两者对比: 

机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)的更多相关文章

  1. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

  2. 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).

  3. 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  4. Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)

    4.1  多维特征 4.2  多变量梯度下降 4.3  梯度下降法实践 1-特征缩放 4.4  梯度下降法实践 2-学习率 4.5  特征和多项式回归 4.6  正规方程 4.7  正规方程及不可逆性 ...

  5. python实现多变量线性回归(Linear Regression with Multiple Variables)

    本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...

  6. 4、、多变量线性回归(Linear Regression with Multiple Variables)

    4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后, ...

  7. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  8. 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归

    Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...

  9. 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables

    相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...

随机推荐

  1. 18.2 of的函数集中的of是Open Firmware的缩写

    内核中操作dtb的一套函数都是of开头,这个of是open firmware.dts的方法来源于open Firmware On Sun SPARC systems, the Open Firmwar ...

  2. delphi字符串分割

    function GetLeft(sText, sepStr: string): string; var p: Integer; begin p := Pos(sepStr, sText); then ...

  3. [转]c#快捷键

    c#快捷键(成为高手必备) CTRL + SHIFT + B生成解决方案 CTRL + F7 生成编译 CTRL + O 打开文件 CTRL + SHIFT + O打开项目 CTRL + SHIFT ...

  4. VS Code 运行 TypeScript 操作指南

    总结一下TypeScript开发环境用到的各种工具: Node——通过npm安装TypeScript及大量依赖包.从https://nodejs.org/下载并安装它:如果安装各种包不方便,可以将安装 ...

  5. 【C++】 多态的实现和原理

    本文转自 https://www.cnblogs.com/cxq0017/p/6074247.html 安利一篇blog,https://blog.csdn.net/u013982161/articl ...

  6. 基础 - 获得CPU主频

    // 获得cpu主频.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <windows.h> #include ...

  7. 并发之lock的condition接口

    13.死磕Java并发-----J.U.C之Condition 12.Condition使用总结 11.Java并发编程系列之十七:Condition接口 === 13.死磕Java并发-----J. ...

  8. MySQL架构之 主从+ProxySQL实现读写分离

    准备服务器: docker run -d --privileged -v `pwd`/mysql_data:/data -p 3001:3306 --name mysql5-master --host ...

  9. 配置gitlab自动备份

    在gitlab机器的root用户执行 首先,假设有2台机器. gitlab 1.1.1.1 backup 2.2.2.2 做秘钥信任 gitlab root 生成 ssh-key copy密钥到bac ...

  10. RobotFramework - AppiumLibrary 之元素定位

    一.介绍 AppiumLibrary 是 Robot Framework 的App测试库. 它使用Appium 与Android 和 iOS应用程序进行通信,类似于Selenium WebDriver ...