机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)
同样是预测房价问题 如果有多个特征值
那么这种情况下 假设h表示为
公式可以简化为
两个矩阵相乘 其实就是所有参数和变量相乘再相加 所以矩阵的乘法才会是那样
那么他的代价函数就是
同样是寻找使J最小的一系列参数
python代码为
比如这种 那么X是[1,2,3] y也是[1,2,3] 那么令theta0 = 0 theta1 = 1 这个函数返回值为0最小 theta0 = 0 theta1=0的话 返回值是2.333
要考虑是否需要特征缩放,特征缩放就是特征分配不均时 会导致梯度下降耗费更多 为了让梯度下降更快
所以
如何选择学习率α呢
梯度下降算法的每次迭代受到学习率的影响,如果学习率 过小,则达到收敛所需的迭代次数会非常高,如果学习率过大,每次迭代可能不会减小代价函数,可能会越过局部最小值导致无法收敛。
通常可以考虑尝试些学习率:0.01,0.03,0.3,1,3,10
而有的时候线性回归并不适用于所有的模型,这个时候我们要考虑用多项式模型
这个时候特征缩放就很重要
梯度下降 线性回归的python代码
# -*- coding=utf8 -*-
import math;
def sum_of_gradient(x, y, thetas):
"""计算梯度向量,参数分别是x和y轴点坐标数据以及方程参数"""
m = len(x);
grad0 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) for i in range(m)])
grad1 = 1.0 / m * sum([(thetas[0] + thetas[1] * x[i] - y[i]) * x[i] for i in range(m)])
return [grad0, grad1];
def step(thetas, direction, step_size):
"""move step_size in the direction from thetas"""
return [thetas_i + step_size * direction_i
for thetas_i, direction_i in zip(thetas, direction)]
def distance(v, w):
"""两点的距离"""
return math.sqrt(squared_distance(v, w))
def squared_distance(v, w):
vector_subtract = [v_i - w_i for v_i, w_i in zip(v, w)]
return sum(vector_subtract_i * vector_subtract_i for vector_subtract_i, vector_subtract_i
in zip(vector_subtract, vector_subtract))
def gradient_descent(stepSize, x, y, tolerance=0.000000001, max_iter=100000):
"""梯度下降"""
iter = 0
# initial theta
thetas = [0, 0];
# Iterate Loop
while True:
gradient = sum_of_gradient(x, y, thetas);
next_thetas = step(thetas, gradient, stepSize);
if distance(next_thetas, thetas) < tolerance: # stop if we're converging
break
thetas = next_thetas # continue if we're not
iter += 1 # update iter
if iter == max_iter:
print 'Max iteractions exceeded!'
break;
return thetas
x = [1, 2, 3];
y = [5, 9, 13];
stepSize = 0.001;
t0, t1 = gradient_descent(-stepSize, x, y);
print t0, " ", t1;
线性回归还有一种更简单的 就是正规方程
这个是用数学推导出来的
两者对比:
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)的更多相关文章
- 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...
- 机器学习第4课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征, 例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...,xn).
- 斯坦福第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- Ng第四课:多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践 1-特征缩放 4.4 梯度下降法实践 2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性 ...
- python实现多变量线性回归(Linear Regression with Multiple Variables)
本文介绍如何使用python实现多变量线性回归,文章参考NG的视频和黄海广博士的笔记 现在对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为( x1,x2,..., ...
- 4、、多变量线性回归(Linear Regression with Multiple Variables)
4.1 多维特征 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为(x1,x2,...xn) 增添更多特征后, ...
- Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable
原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...
- 【原】Coursera—Andrew Ng机器学习—Week 2 习题—Linear Regression with Multiple Variables 多变量线性回归
Gradient Descent for Multiple Variables [1]多变量线性模型 代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D ...
- 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...
随机推荐
- 18.2 of的函数集中的of是Open Firmware的缩写
内核中操作dtb的一套函数都是of开头,这个of是open firmware.dts的方法来源于open Firmware On Sun SPARC systems, the Open Firmwar ...
- delphi字符串分割
function GetLeft(sText, sepStr: string): string; var p: Integer; begin p := Pos(sepStr, sText); then ...
- [转]c#快捷键
c#快捷键(成为高手必备) CTRL + SHIFT + B生成解决方案 CTRL + F7 生成编译 CTRL + O 打开文件 CTRL + SHIFT + O打开项目 CTRL + SHIFT ...
- VS Code 运行 TypeScript 操作指南
总结一下TypeScript开发环境用到的各种工具: Node——通过npm安装TypeScript及大量依赖包.从https://nodejs.org/下载并安装它:如果安装各种包不方便,可以将安装 ...
- 【C++】 多态的实现和原理
本文转自 https://www.cnblogs.com/cxq0017/p/6074247.html 安利一篇blog,https://blog.csdn.net/u013982161/articl ...
- 基础 - 获得CPU主频
// 获得cpu主频.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <windows.h> #include ...
- 并发之lock的condition接口
13.死磕Java并发-----J.U.C之Condition 12.Condition使用总结 11.Java并发编程系列之十七:Condition接口 === 13.死磕Java并发-----J. ...
- MySQL架构之 主从+ProxySQL实现读写分离
准备服务器: docker run -d --privileged -v `pwd`/mysql_data:/data -p 3001:3306 --name mysql5-master --host ...
- 配置gitlab自动备份
在gitlab机器的root用户执行 首先,假设有2台机器. gitlab 1.1.1.1 backup 2.2.2.2 做秘钥信任 gitlab root 生成 ssh-key copy密钥到bac ...
- RobotFramework - AppiumLibrary 之元素定位
一.介绍 AppiumLibrary 是 Robot Framework 的App测试库. 它使用Appium 与Android 和 iOS应用程序进行通信,类似于Selenium WebDriver ...