可以看做棋子放在某个位置后该种颜色就占领了那一行一列。行列间彼此没有区别。

  于是可以设f[i][j][k]表示前k种棋子占领了i行j列的方案数。转移时枚举第k种棋子占领几行几列。注意行列间是有序的,要乘上一个组合数。这里f[i][j][k]可以是在原棋盘选i行j列占领的方案数,也可以是占领i行j列棋盘的方案数,如果是第二种最后统计答案的时候还要乘上个组合数,转移略有不同但没有本质区别。我们还需要计算出k个棋子占领i行j列中的方案数才能转移。

  考虑怎么求这个东西。设其为g[i][j][k]。不妨把行列尽量往左往上移,可以发现棋子只能放置在其重合区域,也就是一个i*j的棋盘。使得这里面每行每列都有棋子就可以了。

  然而还是不太好算。考虑求存在某一行或某一列没有棋子的方案数,那么可以枚举其中有几行几列是空的转移。于是可得g[i][j][k]=C(i*j,k)-Σg[x][y][k]*C(i,x)*C(j,y) (x+y<i+j)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define P 1000000009
#define N 31
#define K 11
int n,m,c,l,a[K],f[K][N][N],g[K][N][N],ans=;
int fac[N*N],inv[N*N],C[N*N][N*N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3294.in","r",stdin);
freopen("bzoj3294.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read(),c=read();
for (int i=;i<=c;i++) a[i]=read();
C[][]=C[][]=;
for (int i=;i<=n*m;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
for (int k=;k<=c;k++)
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (i*j>=a[k])
{
g[k][i][j]=C[i*j][a[k]];
for (int x=;x<=i;x++)
for (int y=;y<=j;y++)
if (x<i||y<j)
inc(g[k][i][j],P-1ll*C[i][x]*C[j][y]%P*g[k][x][y]%P);
}
f[][][]=;
for (int k=;k<=c;k++)
for (int i=k;i<=n;i++)
for (int j=k;j<=m;j++)
if (i*j>=a[k])
for (int x=;x<=i-k+;x++)
for (int y=;y<=j-k+;y++)
inc(f[k][i][j],1ll*f[k-][i-x][j-y]*g[k][x][y]%P*C[n-i+x][x]%P*C[m-j+y][y]%P);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
inc(ans,f[c][i][j]);
cout<<ans;
return ;
}

BZOJ3294 CQOI2011放棋子(动态规划)的更多相关文章

  1. bzoj3294[Cqoi2011]放棋子 dp+组合+容斥

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 755  Solved: 294[Submit][Status] ...

  2. bzoj千题计划261:bzoj3294: [Cqoi2011]放棋子

    http://www.lydsy.com/JudgeOnline/problem.php?id=3294 如果一个颜色的棋子放在了第i行第j列,那这种颜色就会占据第i行第j列,其他颜色不能往这儿放 设 ...

  3. BZOJ3294: [Cqoi2011]放棋子

    Description   Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数保证不超过nm. Output 输出 ...

  4. BZOJ3294: [Cqoi2011]放棋子(计数Dp,组合数学)

    题目链接 解题思路: 发现一个性质,如果考虑一个合法的方案可以将行和列都压到一起,也就是说,在占用行数和列数一定的情况下,行列互换是不会影响答案的,那么考虑使用如下方程: $f[i][j][k]$为占 ...

  5. 【BZOJ3294】放棋子(动态规划,容斥,组合数学)

    [BZOJ3294]放棋子(动态规划,容斥,组合数学) 题面 BZOJ 洛谷 题解 如果某一行某一列被某一种颜色给占了,那么在考虑其他行的时候可以直接把这些行和这些列给丢掉. 那么我们就可以写出一个\ ...

  6. BZOJ 3294: [Cqoi2011]放棋子

    3294: [Cqoi2011]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 628  Solved: 238[Submit][Status] ...

  7. [CQOI2011]放棋子 (DP,数论)

    [CQOI2011]放棋子 \(solution:\) 看到这道题我们首先就应该想到有可能是DP和数论,因为题目已经很有特性了(首先题面是放棋子)(然后这一题方案数很多要取模)(而且这一题的数据范围很 ...

  8. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  9. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

随机推荐

  1. win10升级至专业版

    前几天脑子一热,买了个电脑,默认系统还是那简单的win10家庭版.作为一个IT从业者,家庭版是很难受的,因为没有组策略....会导致在装一些软件的时候无法修改.所以来动手吧,方式有几种,这里都大概说说 ...

  2. 关于PCB开窗

    如果走220V,那么线宽一点,一般高电压下面不覆铜 https://blog.csdn.net/zhy295006359/article/details/77412566 假设感觉需要走大电流,那么就 ...

  3. 配置进程外的Session

    1.Session保存在SQLServer中配置方法 1)运行.NetFramework安装目录下对应版本的aspnet_regsql.exe 来创建相关的数据库.表和存储过程等,比如: C:\Win ...

  4. 把DataTable转换为List<T>

    前一篇有学习过<把List<T>转换为DataTable>http://www.cnblogs.com/insus/p/8043173.html 那此篇,将是学习反向,把Dat ...

  5. [Oracle][DataGuard]Standby数据库文件有损坏时的处理方法

    需要参考: [Oracle]Recovering the primary database's datafile using the physical standby, and vice versa ...

  6. aurora 64B/66B ip核设置与例程代码详解

    见网页https://blog.csdn.net/u014586651/article/details/84349328 https://blog.csdn.net/u012135070/articl ...

  7. Windows 窗体中的事件顺序

    来自:https://docs.microsoft.com/zh-cn/dotnet/framework/winforms/order-of-events-in-windows-forms 对于依次处 ...

  8. [T-ARA][ORGR]

    歌词来源:http://music.163.com/#/song?id=29343993 作曲 : 4번타자/에스킴 [作曲 : 4p/beon-Ta-c/ja-/e-seu-Kim] 作词 : 4번 ...

  9. 测试网站页面网速的一个简单Python脚本

    无聊之余,下面分享一个Python小脚本:测试网站页面访问速度 [root@huanqiu ~]# vim pywww.py #!/usr/bin/python # coding: UTF-8 imp ...

  10. php 中 opendir() readdir() scandir()

    opendir(path,context)若成功,则该函数返回一个目录流,否则返回 false 以及一个 error.可以通过在函数名前加上 “@” 来隐藏 error 的输出. readdir() ...