HDU 6127 Hard challenge(扫描线)
http://acm.hdu.edu.cn/showproblem.php?pid=6127
题意:
有n个点,每个点有一个$(x,y)$坐标和一个权值,任意两点之间都有连线,并且连线的权值为两个顶点的。现在画一条直线,求穿过的直线的权值和最大为多少。
思路:
直线将这些点分成了两个部分,然后你可以发现这两个部分之间所有直线的权值和为他们各部分的权值和的乘积。然后我们将所有点按极角排序,预处理一个前缀和,然后用扫描线扫描一圈即可。
我的做法是每次扫描一下点的个数,然后利用前缀和去计算。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std; #define MAXN 50005
#define LL long long struct Point
{
LL x,y;
int v;
double rad;
bool operator < (const Point&rhs) const
{
return rad < rhs.rad;
}
}p[MAXN]; LL sum[MAXN]; bool left(Point a, Point b)
{
return (LL)a.x*b.y - (LL)a.y*b.x >= ;
} int main()
{
int n,m,T;
//freopen("in.txt","r",stdin);
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%I64d%I64d%d",&p[i].x,&p[i].y,&p[i].v);
p[i].rad = atan2(p[i].y, p[i].x);
}
sort(p,p+n);
sum[]=p[].v;
for(int i=;i<n;i++) sum[i]=sum[i-]+p[i].v; LL ans=;
LL L = , R = , cnt=;
while (L < n) //每个点都尝试与原点成为分割线
{
if (R == L) { R = (R + ) % n; cnt++; } //空区域,数量+1,后面还会减去的
while (R != L && left(p[L], p[R])) //R不等于L并且在180度之内
{
R = (R + ) % n;
cnt++;
} cnt--; //分隔线旋转,原本在分隔线上的点到了右边,所以要减去
//可以理解为将该点分在分隔线的下方 LL t1,t2;
int num=L+cnt;
if(num<n)
{
t1=sum[num]-sum[L];
t2=sum[n-]-t1;
ans=max(ans,t1*t2);
}
else
{
t1=sum[n-]-sum[L]+sum[num-(n-)-];
t2=sum[n-]-t1;
ans=max(ans,t1*t2);
}
L++; //分隔线旋转
}
printf("%I64d\n",ans);
}
return ;
}
HDU 6127 Hard challenge(扫描线)的更多相关文章
- HDU - 6127: Hard challenge(扫描线,atan)
pro:给定N个二维平面的关键点,保证两点连线不经过原点.现在让你安排一条经过原点,但是不经过关键点的直线,使得两边的和的乘积最大. sol:由于连线不经过原点,所以我们极角排序即可. 具体:因为我们 ...
- hdu 6127 Hard challenge(极角/角度排序+枚举+结构体排序新写法)
Hard challenge Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) ...
- 2017多校第7场 HDU 6127 Hard challenge 极角排序,双指针
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6127 题意:平面直角坐标系上有n个整点,第i个点有一个点权val,坐标为(xi,yi),其中不存在任 ...
- 【极角排序+双指针线性扫】2017多校训练七 HDU 6127 Hard challenge
acm.hdu.edu.cn/showproblem.php?pid=6127 [题意] 给定平面直角坐标系中的n个点,这n个点每个点都有一个点权 这n个点两两可以连乘一条线段,定义每条线段的权值为线 ...
- 2017ACM暑期多校联合训练 - Team 7 1008 HDU 6127 Hard challenge (极角排序)
题目链接 Problem Description There are n points on the plane, and the ith points has a value vali, and i ...
- HDU 6127 Hard challenge (极角扫描)
题意:给定 n 个点,和权值,他们两两相连,每条边的权值就是他们两个点权值的乘积,任意两点之间的直线不经过原点,让你从原点划一条直线,使得经过的直线的权值和最大. 析:直接进行极角扫描,从水平,然后旋 ...
- hdu 6127 : Hard challenge (2017 多校第七场 1008)(计算几何)
题目链接 题意:二维平面上有n个点(没有重叠,都不在原点,任意两点连线不过原点),每个点有一个权值,用一条过原点的直线把他们划分成两部分,使两部分的权值和的乘积最大.输出最大的乘积. 极角排序后,将原 ...
- hdu 4052 线段树扫描线、奇特处理
Adding New Machine Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- hdu 1828 线段树扫描线(周长)
Picture Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Sub ...
随机推荐
- SDUTOJ2465:其实玩游戏也得学程序(bfs+优先队列+回溯)
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2465 题目描述 由于前两次的打击,ZYJ同学不 ...
- Mybatis的多对多映射
一.Mybatis的多对多映射 本例讲述使用mybatis开发过程中常见的多对多映射查询案例.只抽取关键代码和mapper文件中的关键sql和配置,详细的工程搭建和Mybatis详细的流程代码可参见& ...
- html08
1.JQuery 是一个js框架一堆的 js文件 -形成 > 包 - 形成> 工具 - 形成> ->库 -> 框架 是一个轻量级的库 封装了js原生里js css dom ...
- MySQL用户授权 和 bin-log日志 详解和实战(http://www.cnblogs.com/it-cen/p/5234345.html)
看 了上一篇博文的发布时间,到目前已经有三个月没更新博文了.这三个月经历了很多事情,包括工作.生活和感情等等.由于个人发展的原因,这个月准备换工作 啦.在这段时间,我会把Web大型项目中所接触到的技术 ...
- VS2010/MFC编程入门之四十六(MFC常用类:MFC异常处理)
上一节中鸡啄米讲了CFile文件操作类,本节主要来说说MFC异常处理. 在鸡啄米C++编程入门系列的最后一节鸡啄米:C++编程入门系列之五十(异常处理)中,鸡啄米讲了C++标准异常的处理机制,如果你还 ...
- mustache语法
mustache 模板,用于构造html页面内容.在实际工作中,当同一个模板中想要调用不同的函数来渲染画面,在已经自定义好了的前提下,可以在渲染页面时对传入的参数进行手动判断. 以下是学习笔记内容: ...
- Jquery图片上传组件,支持多文件上传
Jquery图片上传组件,支持多文件上传http://www.jq22.com/jquery-info230jQuery File Upload 是一个Jquery图片上传组件,支持多文件上传.取消. ...
- Js基础知识5-函数返回值、函数参数、函数属性、函数方法
函数返回值 所有函数都有返回值,没有return语句时,默认返回内容为undefined,和其他面向对象的编程语言一样,return语句不会阻止finally子句的执行. function testF ...
- hibernate的实现原理以及延迟加载
Hibernate是怎样实现呢?主要是依据反射机制. 现在以一次数据库查询操作分析Hibernate实现原理. 假设有一个用户表(tbl_user),表中字段有id,name,sex.同时有一个实体类 ...
- 计算概论(A)/基础编程练习2(8题)/3:计算三角形面积
#include<stdio.h> #include<math.h> int main() { // 声明三角形的三个顶点坐标和面积 float x1, y1, x2, y2, ...