2016-12-31 21:55 1115人阅读 评论(0) 收藏 举报
 分类:
- - - Python(10) 

版权声明:本文为博主原创文章,未经博主允许不得转载。

 

目录(?)[+]

 

1,安装python3.5

如果Python还没有安装,可以直接用yum安装,

  1. # 不过安装的是2.6 version
  2. yum install -y python

源码安装3.5

  1. wget https://www.python.org/ftp/python/3.5.0/Python-3.5.0.tgz
  2. tar -xvf Python-3.5.0.tgz
  3. cd Python-3.5.0
  4. ./configure --prefix=/usr/local--enable-shared
  5. make
  6. make install
  7. ln -s /usr/local/bin/python3 /usr/bin/python3

运行python之前需要配置库

echo /usr/local/lib >> /etc/ld.so.conf.d/local.conf

ldconfig

运行演示

python3 --version

部分执行过程:

  1. [root@03_sdwm Python-3.5.0]# echo/usr/local/lib >> /etc/ld.so.conf.d/local.conf
  2. [root@03_sdwm Python-3.5.0]# ldconfig
  3. [root@03_sdwm Python-3.5.0]#
  4. [root@03_sdwm Python-3.5.0]#
  5. [root@03_sdwm Python-3.5.0]# python3--version
  6. Python 3.5.0
  7. [root@03_sdwm Python-3.5.0]#

2,安装pymongo

安装方法有2种,分别是Installing with pip和Installing with easy_install,这里采用Installing witheasy_install参考官方文章:

http://api.mongodb.com/python/current/installation.html#installing-with-easy-install

安装python pymongo

  1. [root@03_sdwm ~]# python3 -m easy_install pymongo
  2. Searching for pymongo
  3. Reading http://pypi.python.org/simple/pymongo/
  4. Best match: pymongo 3.4.0
  5. Downloading https://pypi.python.org/packages/82/26/f45f95841de5164c48e2e03aff7f0702e22cef2336238d212d8f93e91ea8/pymongo-3.4.0.tar.gz#md5=aa77f88e51e281c9f328cea701bb6f3e
  6. Processing pymongo-3.4.0.tar.gz
  7. Running pymongo-3.4.0/setup.py -q bdist_egg --dist-dir /tmp/easy_install-ZZv1Ig/pymongo-3.4.0/egg-dist-tmp-LRDmoy
  8. zip_safe flag not set; analyzing archive contents...
  9. Adding pymongo 3.4.0 to easy-install.pth file
  10. Installed /usr/lib/python2.6/site-packages/pymongo-3.4.0-py2.6-linux-x86_64.egg
  11. Processing dependencies for pymongo
  12. Finished processing dependencies for pymongo
  13. [root@03_sdwm ~]#

3,使用pymongo操作mongodb

进行一些简单的对mongodb库的操作
  1. #!/usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. import pymongo
  4. import datetime
  5. def get_db():
  6. # 建立连接
  7. client = pymongo.MongoClient(host="10.244.25.180", port=27017)
  8. db = client['example']
  9. #或者 db = client.example
  10. return db
  11. def get_collection(db):
  12. # 选择集合(mongo中collection和database都是延时创建的)
  13. coll = db['informations']
  14. print db.collection_names()
  15. return coll
  16. def insert_one_doc(db):
  17. # 插入一个document
  18. coll = db['informations']
  19. information = {"name": "quyang", "age": "25"}
  20. information_id = coll.insert(information)
  21. print information_id
  22. def insert_multi_docs(db):
  23. # 批量插入documents,插入一个数组
  24. coll = db['informations']
  25. information = [{"name": "xiaoming", "age": "25"}, {"name": "xiaoqiang", "age": "24"}]
  26. information_id = coll.insert(information)
  27. print information_id
  28. def get_one_doc(db):
  29. # 有就返回一个,没有就返回None
  30. coll = db['informations']
  31. print coll.find_one()  # 返回第一条记录
  32. print coll.find_one({"name": "quyang"})
  33. print coll.find_one({"name": "none"})
  34. def get_one_by_id(db):
  35. # 通过objectid来查找一个doc
  36. coll = db['informations']
  37. obj = coll.find_one()
  38. obj_id = obj["_id"]
  39. print "_id 为ObjectId类型,obj_id:" + str(obj_id)
  40. print coll.find_one({"_id": obj_id})
  41. # 需要注意这里的obj_id是一个对象,不是一个str,使用str类型作为_id的值无法找到记录
  42. print "_id 为str类型 "
  43. print coll.find_one({"_id": str(obj_id)})
  44. # 可以通过ObjectId方法把str转成ObjectId类型
  45. from bson.objectid import ObjectId
  46. print "_id 转换成ObjectId类型"
  47. print coll.find_one({"_id": ObjectId(str(obj_id))})
  48. def get_many_docs(db):
  49. # mongo中提供了过滤查找的方法,可以通过各种条件筛选来获取数据集,还可以对数据进行计数,排序等处理
  50. coll = db['informations']
  51. #ASCENDING = 1 升序;DESCENDING = -1降序;default is ASCENDING
  52. for item in coll.find().sort("age", pymongo.DESCENDING):
  53. print item
  54. count = coll.count()
  55. print "集合中所有数据 %s个" % int(count)
  56. #条件查询
  57. count = coll.find({"name":"quyang"}).count()
  58. print "quyang: %s"%count
  59. def clear_all_datas(db):
  60. #清空一个集合中的所有数据
  61. db["informations"].remove()
  62. if __name__ == '__main__':
  63. db = get_db()
  64. my_collection = get_collection(db)
  65. post = {"author": "Mike", "text": "My first blog post!", "tags": ["mongodb", "python", "pymongo"],
  66. "date": datetime.datetime.utcnow()}
  67. # 插入记录
  68. my_collection.insert(post)
  69. insert_one_doc(db)
  70. # 条件查询
  71. print my_collection.find_one({"x": "10"})
  72. # 查询表中所有的数据
  73. for iii in my_collection.find():
  74. print iii
  75. print my_collection.count()
  76. my_collection.update({"author": "Mike"},
  77. {"author": "quyang", "text": "My first blog post!", "tags": ["mongodb", "python", "pymongo"],
  78. "date": datetime.datetime.utcnow()})
  79. for jjj in my_collection.find():
  80. print jjj
  81. get_one_doc(db)
  82. get_one_by_id(db)
  83. get_many_docs(db)
  84. # clear_all_datas(db)
  1. mysql> show profile for query 4;
  2. +--------------------+----------+
  3. | Status             | Duration |
  4. +--------------------+----------+
  5. | executing          | 0.000017 |
  6. | Sending data       | 0.018048 |
  7. | executing          | 0.000028 |
  8. | Sending data       | 0.018125 |
  9. | executing          | 0.000022 |
  10. | Sending data       | 0.015749 |
  11. | executing          | 0.000017 |
  12. | Sending data       | 0.015633 |
  13. | executing          | 0.000017 |
  14. | Sending data       | 0.015382 |
  15. | executing          | 0.000015 |
  16. | Sending data       | 0.015707 |
  17. | executing          | 0.000023 |
  18. | Sending data       | 0.015890 |
  19. | executing          | 0.000022 |
  20. | Sending data       | 0.015908 |
  21. | executing          | 0.000017 |
  22. | Sending data       | 0.015761 |
  23. | executing          | 0.000022 |
  24. | Sending data       | 0.015542 |
  25. | executing          | 0.000014 |
  26. | Sending data       | 0.015561 |
  27. | executing          | 0.000016 |
  28. | Sending data       | 0.015546 |
  29. | executing          | 0.000037 |
  30. | Sending data       | 0.015555 |
  31. | executing          | 0.000015 |
  32. | Sending data       | 0.015779 |
  33. | executing          | 0.000026 |
  34. | Sending data       | 0.015815 |
  35. | executing          | 0.000015 |
  36. | Sending data       | 0.015468 |
  37. | executing          | 0.000015 |
  38. | Sending data       | 0.015457 |
  39. | executing          | 0.000015 |
  40. | Sending data       | 0.015457 |
  41. | executing          | 0.000014 |
  42. | Sending data       | 0.015500 |
  43. | executing          | 0.000014 |
  44. | Sending data       | 0.015557 |
  45. | executing          | 0.000015 |
  46. | Sending data       | 0.015537 |
  47. | executing          | 0.000014 |
  48. | Sending data       | 0.015395 |
  49. | executing          | 0.000021 |
  50. | Sending data       | 0.015416 |
  51. | executing          | 0.000014 |
  52. | Sending data       | 0.015416 |
  53. | executing          | 0.000014 |
  54. | Sending data       | 0.015399 |
  55. | executing          | 0.000023 |
  56. | Sending data       | 0.015407 |
  57. | executing          | 0.000014 |
  58. | Sending data       | 0.015585 |
  59. | executing          | 0.000014 |
  60. | Sending data       | 0.015385 |
  61. | executing          | 0.000014 |
  62. | Sending data       | 0.015412 |
  63. | executing          | 0.000014 |
  64. | Sending data       | 0.015408 |
  65. | executing          | 0.000014 |
  66. | Sending data       | 0.015753 |
  67. | executing          | 0.000014 |
  68. | Sending data       | 0.015376 |
  69. | executing          | 0.000014 |
  70. | Sending data       | 0.015416 |
  71. | executing          | 0.000019 |
  72. | Sending data       | 0.015368 |
  73. | executing          | 0.000014 |
  74. | Sending data       | 0.015481 |
  75. | executing          | 0.000015 |
  76. | Sending data       | 0.015619 |
  77. | executing          | 0.000015 |
  78. | Sending data       | 0.015662 |
  79. | executing          | 0.000016 |
  80. | Sending data       | 0.015574 |
  81. | executing          | 0.000015 |
  82. | Sending data       | 0.015566 |
  83. | executing          | 0.000015 |
  84. | Sending data       | 0.015488 |
  85. | executing          | 0.000013 |
  86. | Sending data       | 0.015493 |
  87. | executing          | 0.000015 |
  88. | Sending data       | 0.015386 |
  89. | executing          | 0.000015 |
  90. | Sending data       | 0.015485 |
  91. | executing          | 0.000018 |
  92. | Sending data       | 0.015760 |
  93. | executing          | 0.000014 |
  94. | Sending data       | 0.015386 |
  95. | executing          | 0.000015 |
  96. | Sending data       | 0.015418 |
  97. | executing          | 0.000014 |
  98. | Sending data       | 0.015458 |
  99. | end                | 0.000016 |
  100. | query end          | 0.000019 |
  101. | closing tables     | 0.000018 |
  102. | freeing items      | 0.000825 |
  103. | logging slow query | 0.000067 |
  104. | cleaning up        | 0.000025 |
  105. +--------------------+----------+
  106. 100 rows in set, 1 warning (0.00 sec)
  107. mysql>

Python 使用pymongo操作mongodb库的更多相关文章

  1. python操作三大主流数据库(8)python操作mongodb数据库②python使用pymongo操作mongodb的增删改查

    python操作mongodb数据库②python使用pymongo操作mongodb的增删改查 文档http://api.mongodb.com/python/current/api/index.h ...

  2. python 通过pymongo操作mongoDB执行sort

    在mongo shell 中对数据进行排序操作的时候 db.getCollection('ANJUKE_PRICE').find({},{'id':1,'_id':0}).sort({'id':1}) ...

  3. MongoDB学习【四】—pymongo操作mongodb数据库

    一.pymongodb的安装 Python 要连接 MongoDB 需要 MongoDB 驱动,这里我们使用 PyMongo 驱动来连接. pip安装 pip 是一个通用的 Python 包管理工具, ...

  4. python使用pymongo访问MongoDB的基本操作,以及CSV文件导出

    1. 环境. Python:3.6.1 Python IDE:pycharm 系统:win7 2. 简单示例 import pymongo # mongodb服务的地址和端口号mongo_url = ...

  5. pymongo操作mongodb

    此验证中只开启两个mongodb节点,可以连接任意节点,以下操作不涉及读写,不涉及连接那个节点 mongodb连接: from pymongo import MongoReplicaSetClient ...

  6. python(3):文件操作/os库

      文件基本操作 r,以读模式打开,  r+=r+w, w, 写模式(清空原来的内容), w+=w+r, a , 追加模式, a+=a+r, rb, wb, ab, b表示以二进制文件打开 想在一段文 ...

  7. Python操作MongoDB看这一篇就够了

    MongoDB是由C++语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储形式类似JSON对象,它的字段值可以包含其他文档.数组及文档数组,非常灵活.在这一节中,我们就来看 ...

  8. python操作mongodb

    # python操作mongodb # 首先,引入第三方模块pymongo,该模块是python用来操作mongodb的 import pymongo # 第二步,设置ip地址,以及表格名称,表格名字 ...

  9. 8.3 操作MongoDB数据库

    一项权威调查显示,在大数据时代软件开发人员必备的十项技能中MongoDB数据库名列第二,仅次于HTML5.MongoDB是一个基于分布式文件存储的文档数据库,可以说是非关系型(Not Only SQL ...

随机推荐

  1. build-your-own-lisp

    https://www.gitbook.com/book/ksco/build-your-own-lisp/details

  2. react-router 从 v2/v3 to v4 迁移(翻译)

    react-router v4 是完全重写的,所以没有简单的迁移方式,这份指南将为您提供一些步骤,以帮助您了解如何升级应用程序. 注意: 这份迁移指南适用于react-router v2和v3,但为简 ...

  3. jeffy-vim-v3.2

    jeffy-vim-v3.2 增加了vim-gutentags 插件,支持tags自动生成.

  4. NSNotificationCenter消息注册与撤销

    苹果的消息机制是个非常好用的东西,当需要在类的各个实例之间传递消息或者写一些事件驱动的程序时,绝对是个不错的工具.但是使用时一不小心就会造成引用已经被dealloc的对象的错误,引起程序崩溃.于是,在 ...

  5. python测试开发django-12.models设置主键primary_key

    前言 django的models新增数据库表时,如果不设置主键,会默认新增一个id为主键,如果我们想自己设置一个字段为主键,需加个参数primary_key=True 默认id主键 新增一张用户表,表 ...

  6. you have mixed tabs and spaces fix this

    http://blog.csdn.net/tonyyan19781/article/details/60882443 Vs2013 IDE下,编辑C++的工程源码,在打开文件的时候,会出现 " ...

  7. JavaScript:ECMAScript 引用类型

    ylbtech-JavaScript:ECMAScript 引用类型 1. 返回顶部 2. ECMAScript 引用类型返回顶部 引用类型通常叫做类(class). 本教程会讨论大量的 ECMASc ...

  8. 数据库实例: STOREBOOK > 用户 > 编辑 用户: SYS

    ylbtech-Oracle:数据库实例: 数据库实例: STOREBOOK  >  用户  >  编辑 用户: SYS 编辑 用户: SYS 1. 一般信息返回顶部 1.1, 1.2, ...

  9. [leetcode]Clone Graph @ Python

    原题地址:https://oj.leetcode.com/problems/clone-graph/ 题意:实现对一个图的深拷贝. 解题思路:由于遍历一个图有两种方式:bfs和dfs.所以深拷贝一个图 ...

  10. Java系列:使用软引用构建敏感数据的缓存

    一.为什么需要使用软引用    首先,我们看一个雇员信息查询系统的实例.我们将使用一个Java语言实现的雇员信息查询系统查询存储在磁盘文件或者数据库中的雇员人事档案信息.作为一个用户,我们完全有可能需 ...