hadoop实战--搭建开发环境及编写Hello World
本文地址:http://www.cnblogs.com/archimedes/p/hadoop-helloworld.html,转载请注明源地址。
欢迎关注我的个人博客:www.wuyudong.com, 更多云计算与大数据的精彩文章
1、下载
整个Hadoop是基于Java开发的,所以要开发Hadoop相应的程序就得用java方便
进入网站:http://archive.eclipse.org/eclipse/downloads/
选择3.71 eclipse SDK 进入下面的页面:
http://archive.eclipse.org/eclipse/downloads/drops/R-3.7.1-201109091335/#EclipseSDK
选择相关的版本下载JDK,我选择的版本是:eclipse-SDK-3.7.1-linux-gtk
PS:查看linux系统是32位的还是64位的,可以使用下面的命令:
#uname -a
由于我的系统是32位的,所有选择相应的linux版本
2、解压缩
下载下来一般是tar.gz文件,运行:
$tar -zxvf eclipse-SDK-3.7.-linux-gtk.tar.gz -C ~/opt
这里opt是需要解压的目录,我习惯将一些软件放在opt文件夹中
解完后,在opt文件夹下,就可以看到eclipse文件夹。
运行:$~/opt/eclipse/eclipse
3、下载hadoop在eclise中的插件并配置
直接进入:http://www.java2s.com/Code/Jar/h/Downloadhadoop0202eclipsepluginjar.htm
注意:下载下来的是:hadoop-0.20.2-eclipse-plugin.jar.zip,先解压缩成 hadoop-0.20.2-eclipse-plugin.jar
当然,更加简单的方法是:hadoop-0.20.2/contrib/eclipse-plugin/文件夹中有个hadoop-0.20.2-eclipse-plugin.jar
将jar包放在eclipse安装目录下的plugins文件夹下。然后启动eclipse
进入后,在菜单window->Rreferences下打开设置:
点击“Ant” 出现:
点击browse选择hadoop的源码下的build目录,然后点OK
打开Window->Show View->Other 选择Map/Reduce Tools,单击Map/Reduce Locations,会打开一个View:
添加Hadoop Loacation,其中Host和Port的内容这里的host和port对应mapred-site.xml中mapred.job.tracker的值,UserName 是用户名,我配置的是localhost和9001
但是出现如下问题,eclipse的左侧看不到project explorer,更看不到其中的dfs
解决办法:
应该在菜单栏
选择:Window->Open pespective-><Map/Reduce>。然后就能看到HDFS文件系统已经所创建得一些项目。
添加Hadoop Loacation,其中Host和Port的内容跟据conf/hadoop-site.xml的配置填写,UserName 是用户名,如下图
成功添加Hadoop Loacation后还可能出现如下错误:
解决办法:
这时候,需要对namenode进行格式化:bin/hadoop namenode -format
执行命令:bin/start-all.sh
如果test下面的文件夹显示(1)而不是(2)也是正常的,如果要显示(2),运行《安装并运行hadoop》一文中最后的那几个命令。
在配置完后,在Project Explorer中就可以浏览到DFS中的文件,一级级展开,可以看到之前我们上传的in文件夹,以及当是存放的2个txt文件,同时看到一个在计算完后的out文件夹。
现在我们要准备自己写个Hadoop 程序了,所以我们要把这个out文件夹删除,有两种方式,一是可以在这树上,执行右健删除。 二是可以用命令行:
$ bin/hadoop fs -rmr out
用$bin/hadoop fs -ls 查看
4、编写HelloWorld
环境搭建好了,之前运行Hadoop时,直接用了examples中的示例程序跑了下,现在可以自己来写这个HelloWorld了。在eclipse菜单下 new Project 可以看到,里面增加了Map/Reduce选项:
选中,点下一步:
输入项目名称后,继续(next), 再点Finish
然后在Project Explorer中就可以看到该项目了,展开,src发现里面啥也没有,于是右健菜单,新建类(new->new class):
然后点击Finish,就可以看到创建了一个java类了:
然后在这个类中填入下面代码:
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(wordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
填入代码后,会看到一些错误,没关系,点击边上的红叉,然后选择里面的import即可:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
这里,如果直接用源码来操作,可能会GenericOptionsParser这个类找不到定义,还是红叉,添加commons-cli-1.2.jar这个jar包,在build/ivy/lib/Hadoop/Common下,右健Project Explorer中的MyHelloWorld工程,选择Build Path->Config Build Path
在Liberaries Tab页下,点击Add External JARs 在弹出窗口中,跟据前面说的目录,找到这个jar包,点确定后,回到工程,可以看到红叉消失,说明编译都通过了。
在确保整个工程没有错误后,点击上面的小绿箭头,然后在弹出的小窗口上,选择Run On Hadoop:
点OK后,会弹出小窗口:
然手中选择Choose an existing server from the list below。然后找到之前配置的地址项,选中后,点Finish,然后系统不会Run起来,在控制台(双击可最大化)中可以看到运行结果:
运行完后,可以看到多了一个out文件夹,双击打开out文件可以看到单词的统计结果来
可能出现的问题:
问题1:
如果点了Run On Hadoop没有反应,则可能你下的这个插件有问题,
重新到:https://issues.apache.org/jira/secure/attachment/12460491/hadoop-eclipse-plugin-0.20.3-SNAPSHOT.jar
下载,然后将下载的插件重命名为"hadoop-0.20.2-eclipse-plugin.jar",放入eclipse中的plugins目录下。
问题2:
运行后,如果Console里只输出Usage :wordcount<in> <out>,
则需要修改下参数,在运行菜单边上小箭头,下拉,点击Run Configuration,:
左边选中 JavaApplication中的 WordCount,右边,在Arguments中输入 in out。然后再点Run 就可以看到结果了。
左边选中 JavaApplication中的 WordCount,右边,在Arguments中输入 in out。然后再点Run 就可以看到结果了。
问题3:
第二次运行会报错,仔细看提示,可以看到报错的是out目录已经存在,所以需要手动来删除一下。
更进一步
上面我们写了一个MapReduce的HelloWorld程序,现在,我们就也学一学HDFS程序的编写。HDFS是什么,它是一个分布式文件存储系统。一般常用操作有哪些? 当然我们可以从编程角度来:创建、读、写一个文件,列出文件夹中的文件及文件夹列表,删除文件夹,删除目录,移动文件或文件夹,重命名文件或文件夹。
启动eclipse,新建Hadoop项目,名称MyHDFSTest,新建类HDFSTest,点击确定,然后同样工程属性Configure BuildPath中把 build/ivy/lib/Hadoop下的所有jar包都引用进来(不详细说明了,可参考上面的步骤)
在类中,添加main函数:
public static void main(String[] args) {
}
或者也可以在添加类时,勾选上创建main,则会自动添加上。
在mian函数中添加以下内容:
try {
Configuration conf = new Configuration();
conf.set("fs.default.name", "hdfs://localhost:9000");
FileSystem hdfs = FileSystem.get(conf);
Path path = new Path("in/test3.txt");
FSDataOutputStream outputStream = hdfs.create(path);
byte[] buffer = "Hello".getBytes();
outputStream.write(buffer, 0, buffer.length);
outputStream.flush();
outputStream.close();
System.out.println("Create OK");
} catch (IOException e) {
e.printStackTrace();
}
直接添加进来会报错,然后需要添加一些引用才行:
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
在没有错误后,点击工具条上的运行, 但这次跟前次不一样,选择Run as Java Application。然后,就可以在输出框中看到Create OK的字样了,表明程序运行成功。
这段代码的意思是在in文件夹下,创建test3.txt,里面的内容是"Hello"。 在运行完后,我们可以到eclipse的Project Explorer中查看是否有这文件以及内容。同样也可以用命令行查看$bin/hadoop fs -ls in。
ok,第一个操作HDFS的程序跑起来了,那其它功能只要套上相应的处理类就可以了。为了方便查找操作,我们列举了张表:
操作说明 |
操作本地文件 |
操作DFS文件 |
主要命名空间 |
java.io.File java.io.FileInputStream java.io.FileOutputStream |
org.apache.hadoop.conf.Configuration org.apache.hadoop.fs.FileSystem org.apache.hadoop.fs.Path org.apache.hadoop.fs.FSDataInputStream; org.apache.hadoop.fs.FSDataOutputStream |
初使化对象 |
new File(路径); |
Configuration FileSystem hdfs |
创建文件 |
File.createNewFile(); |
FSDataOutputStream = hdfs.create(path) FSDataOutputStream.write( buffer, 0, buffer.length); |
创建文件夹 |
File.mkdir() |
hdfs.mkdirs(Path); |
读文件 |
new FileInputStream(); FileInputStream.read(buffer) |
FSDataInputStream = hdfs.open(path); FSDataInputStream.read(buffer); |
写文件 |
FileOutputStream.write( buffer, 0, buffer.length); |
FSDataOutputStream = hdfs.append(path) FSDataOutputStream.write( buffer, 0, buffer.length); |
删除文件(夹) |
File.delete() |
FileSystem.delete(Path) |
列出文件夹内容 |
File.list(); |
FileSystem.listStatus() |
重命令文件(夹) |
File.renameTo(File) |
FileSystem.rename(Path, Path) |
有了这张表,以后在需要的时候就可以方便查询了。
参考资料:
1、http://www.cnblogs.com/zjfstudio/p/3870762.html
2、http://www.cnblogs.com/xia520pi/archive/2012/05/16/2504205.html
hadoop实战--搭建开发环境及编写Hello World的更多相关文章
- hadoop搭建开发环境及编写Hello World
hadoop搭建开发环境及编写Hello World 本文地址:http://www.cnblogs.com/archimedes/p/hadoop-helloworld.html,转载请注明源地 ...
- Hadoop学习笔记(4) ——搭建开发环境及编写Hello World
Hadoop学习笔记(4) ——搭建开发环境及编写Hello World 整个Hadoop是基于Java开发的,所以要开发Hadoop相应的程序就得用JAVA.在linux下开发JAVA还数eclip ...
- Hadoop基础教程之搭建开发环境及编写Hello World
整个Hadoop是基于Java开发的,所以要开发Hadoop相应的程序就得用JAVA.在linux下开发JAVA还数eclipse方便. 1.下载 进入官网:http://eclipse.org/do ...
- maven实战(01)_搭建开发环境
一 下载maven 在maven官网上可下载maven:http://maven.apache.org/download.cgi 下载好后,解压.我的解压到了:D:\maven\apache-mave ...
- 搭建Spring开发环境并编写第一个Spring小程序
搭建Spring开发环境并编写第一个Spring小程序 2015-05-27 0个评论 来源:茕夜 收藏 我要投稿 一.前面,我写了一篇Spring框架的基础知识文章,里面没 ...
- vue.js2.0实战(1):搭建开发环境及构建项目
Vue.js学习系列: vue.js2.0实战(1):搭建开发环境及构建项目 https://my.oschina.net/brillantzhao/blog/1541638 vue.js2.0实战( ...
- Windows10系统下Hadoop和Hive开发环境搭建填坑指南
前提 笔者目前需要搭建数据平台,发现了Windows系统下,Hadoop和Hive等组件的安装和运行存在大量的坑,而本着有坑必填的目标,笔者还是花了几个晚上的下班时候在多个互联网参考资料的帮助下完成了 ...
- 【.NET Core项目实战-统一认证平台】基于jackcao博客使用VSCode开发及感悟One搭建开发环境
原博客系列文章链接:https://www.cnblogs.com/jackcao/ 金焰的世界 感谢博主无私的奉献,感谢博主幼儿班的教学 基于jackcao博客使用VsCode开发及感悟One搭建开 ...
- 深入浅出Docker(五):基于Fig搭建开发环境
概述 在搭建开发环境时,我们都希望搭建过程能够简单,并且一劳永逸,其他的同事可以复用已经搭建好的开发环境以节省开发时间.而在搭建开发环境时,我们经常会被复杂的配置以及重复的下载安装所困扰.在Docke ...
随机推荐
- Linq简单使用
简单使用 from子查询 关联多个数据源 分组 let 子句 查询对象(上例中为list变量)为IEnumerable<T>或IQueryable<T>类型 查询返回结果同样为 ...
- Python之路【第一篇】:介绍、基本语法、流程控制
一.python 简介 python 特点 Python是一种计算机程序设计语言.你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网 ...
- 基于rsync方式的文件备份
rsync 是一个快速增量文件传输工具,它可以用于在同一主机备份内部的备分,我们还可以把它作为不同主机网络备份工具之用.本文主要讲述的是如何自架rsync服 务器,以实现文件传输.备份和镜像.相对ta ...
- html5一些容易忽略的细节
最近由于经常写前端,所以系统性的看了一下html5页面的基础信息,虽然以前写了很久的html代码,但是其中的一些细节还是容易被忽略,所以这里一起整理一下. 在html5中,空元素结尾处的空格和斜杠是可 ...
- angular4 使用window事件
Angular使用window对象中的事件最好不要像使用jQuery那样使用 如下: 注:写事件直接绑定到window对象上了,组件销毁时这个事件没有解绑 可以使用剪头函数不用声明that 注:这样写 ...
- zookpeer应用和zkclient实践
分布式 zkclient 排它锁 在需要获取排它锁时,通过调用create()接口,创建临时子节点.zk会保证在所有客户端中,只有一个会创建成功,从而获取锁. 其他客户端注册该节点的变更watch监听 ...
- 【CF contest/792/problem/E】
E. Colored Balls time limit per test 1 second memory limit per test 256 megabytes input standard inp ...
- 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)
4332: JSOI2012 分零食 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 119 Solved: 66 Description 这里是欢乐 ...
- BZOJ2157: 旅游 树链剖分 线段树
http://www.lydsy.com/JudgeOnline/problem.php?id=2157 在对树中数据进行改动的时候需要很多pushdown(具体操作见代码),不然会wa,大概原因 ...
- 2017-2018-1 JAVA实验站 第三周作业
2017-2018-1 JAVA实验站 第三周作业 团队展示 队名 JAVA实验站 拟作的团队项目描述 (2048)增加其他模式,使得2048更加丰富多彩 团队的首次合照 团队的特色描述 团队内部很团 ...