Let's examine a pointfree way to write these applicative calls. Since we know map is equal to of/ap, we can write generic functions that will ap as many times as we specify:

const liftA2 = curry((g, f1, f2) => f1.map(g).ap(f2));

const liftA3 = curry((g, f1, f2, f3) => f1.map(g).ap(f2).ap(f3));

// liftA4, etc

Let's see the previous examples written this way:

const profile = name => email => `${name}__${email}`;
const safeProfile = liftA2(profile);
const res1 = safeProfile(prop('name', user), prop('email', user)); // John Doe__blurp_blurp
liftA2(add, Maybe.of(), Maybe.of());
// Maybe(5) liftA2(renderPage, Http.get('/destinations'), Http.get('/events'));
// Task('<div>some page with dest and events</div>') liftA3(signIn, getVal('#email'), getVal('#password'), IO.of(false));
// IO({ id: 3, email: 'gg@allin.com' })

liftAN: Lift a curry function into a Functor context, which will be define later;

liftA2(add, Maybe.of(2), Maybe.of(3)); Maybe will be the Functor context for 'add' function which has been lifted

Laws:

Identity

// identity
A.of(id).ap(v) === v;

For example:

const v = Identity.of('Pillow Pets');
Identity.of(id).ap(v) === v;

Homomorphism

// homomorphism
A.of(f).ap(A.of(x)) === A.of(f(x));

homomorphism is just a structure preserving map. In fact, a functor is just a homomorphism between categories as it preserves the original category's structure under the mapping.

A quick example:

Either.of(toUpperCase).ap(Either.of('oreos')) === Either.of(toUpperCase('oreos'));

Interchange

The interchange law states that it doesn't matter if we choose to lift our function into the left or right side of ap.

// interchange
v.ap(A.of(x)) === A.of(f => f(x)).ap(v);

Here is an example:

const v = Task.of(reverse);
const x = 'Sparklehorse'; v.ap(Task.of(x)) === Task.of(f => f(x)).ap(v);

Composition

// composition
A.of(compose).ap(u).ap(v).ap(w) === u.ap(v.ap(w));
const u = IO.of(toUpperCase);
const v = IO.of(concat('& beyond'));
const w = IO.of('blood bath '); IO.of(compose).ap(u).ap(v).ap(w) === u.ap(v.ap(w));

Examples:

const safeAdd = curry((a, b) => Maybe.of(add).ap(a).ap(b));
const safeAdd = liftA2(add); const localStorage = {
player1: { id:, name: 'Albert' },
player2: { id:, name: 'Theresa' },
}; // getFromCache :: String -> IO User
const getFromCache = x => new IO(() => localStorage[x]); // game :: User -> User -> String
const game = curry((p1, p2) => `${p1.name} vs ${p2.name}`);
// startGame :: IO String
const startGame = liftA2(game, getFromCache('player1'), getFromCache('player2'));

[Functional Programming] Working with two functors(Applicative Functors)-- Part2 --liftAN的更多相关文章

  1. [Functional Programming] Working with two functors(Applicative Functors)-- Part1 --.ap

    What is applicative functor: the ability to apply functors to each other. For example we have tow fu ...

  2. UCF Local Programming Contest 2016 J题(二分+bfs)

    题目链接如下: https://nanti.jisuanke.com/t/43321 思路: 显然我们要采用二分的方法来寻找答案,给定一个高度如果能确定在这个高度时是否可以安全到达终点,那我们就可以很 ...

  3. Programming | 中/ 英文词频统计(MATLAB实现)

    一.英文词频统计 英文词频统计很简单,只需借助split断句,再统计即可. 完整MATLAB代码: function wordcount %思路:中文词频统计涉及到对"词语"的判断 ...

  4. Coursera Algorithms Programming Assignment 4: 8 Puzzle (100分)

    题目原文:http://coursera.cs.princeton.edu/algs4/assignments/8puzzle.html 题目要求:设计一个程序解决8 puzzle问题以及该问题的推广 ...

  5. Coursera Algorithms Programming Assignment 3: Pattern Recognition (100分)

    题目原文详见http://coursera.cs.princeton.edu/algs4/assignments/collinear.html 程序的主要目的是寻找n个points中的line seg ...

  6. The 2019 Asia Nanchang First Round Online Programming Contest C. Hello 2019(动态dp)

    题意:要找到一个字符串里面存在子序列9102 而不存在8102 输出最小修改次数 思路:对于单次询问 我们可以直接区间dpOn求出最小修改次数 但是对于多次询问 我在大部分题解看到的解释一般是用线段树 ...

  7. Functional Programming 资料收集

    书籍: Functional Programming for Java Developers SICP(Structure and Interpretation of Computer Program ...

  8. Sth about 函数式编程(Functional Programming)

    今天开会提到了函数式编程,针对不同类型的百年城方式,查阅了一部分资料,展示如下: 编程语言一直到近代,从汇编到C到Java,都是站在计算机的角度,考虑CPU的运行模式和运行效率,以求通过设计一个高效的 ...

  9. iOS 开发之函数式编程思想(Functional Programming)

    函数式编程(Functional Programming), 函数式编程强调的函数:1.不依赖外部状态:2.不改变外部状态. 函数式编程可解决线程安全问题,每一个函数都是线程安全的. 时间状态:变量一 ...

随机推荐

  1. ZOJ 3957 Knuth-Morris-Pratt Algorithm

    暴力. #include<bits/stdc++.h> using namespace std; ]; int main() { int T; scanf("%d",& ...

  2. Django+Nginx+uwsgi搭建自己的博客(四)

    由于在上篇博文中仍然介绍了相当多的后端部分,导致原定于上篇介绍的前端部分“跳票”到了这篇.在此篇博文中,我将会介绍Users App和主页的前端部分,从而形成我们博客的一个雏形. 在前端部分,我们主要 ...

  3. CodeForces 606C Sorting Railway Cars(最长连续上升子序列)

    Description An infinitely long railway has a train consisting of n cars, numbered from 1 to n (the n ...

  4. AIDL原理之 Framewok层实现

    AIDLFramework层的架构,如下图: 换而言之,Android就是在传统的C/S架构中加入了一层,实现IPC.图中表明,AIDL类似COM的Proxy/Stub架构.不过是现在android自 ...

  5. Java类实例化原理

    Java对象的创建过程包括 类初始化(JVM类加载机制)和类实例化两个阶段. 一.Java对象创建时机 (1)使用new关键字创建对象 (2)反射创建对象 使用Class类的newInstance方法 ...

  6. SQL的in的参数化查询

    SqlCommand cmd=con.CreateCommand(); cmd.CommandText="exec('select * from novel where novelid in ...

  7. python gensim的第一次试用

    参考于 http://blog.csdn.net/xiaoquantouer/article/details/53583980 有一个地方很重要,一定要安装anaconda,安装库简直不要太方便. 先 ...

  8. Ehcache缓存时间设置

    timeToLiveSeconds和timeToIdleSecondstimeToLiveSeconds=x:缓存自创建日期起至失效时的间隔时间x:timeToIdleSeconds=y:缓存创建以后 ...

  9. CentOS依赖包查找工具(https://centos.pkgs.org)

    https://centos.pkgs.org 通过这个地址,可以搜索出一些常用包放在哪些依赖或者仓库上.

  10. 树莓派(Debian)系统设置了静态IP之后还会获取动态IP的问题解决(scope global secondary eth0)

    解决方法: 1.配置好静态IP在/etc/network/interface 2.关闭dhcp服务(不知道这个服务是干嘛的,明明是客户端还需要这个) sudo systemctl stop dhcpc ...