一、递归原理小案例分析

(1)# 概述

递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到!

(2)# 写递归的过程

1、写出临界条件
2、找出这一次和上一次关系
3、假设当前函数已经能用,调用自身计算上一次的结果,再求出本次的结果

(3)案例分析:求1+2+3+…+n的数和?

# 概述
'''
递归:即一个函数调用了自身,即实现了递归
凡是循环能做到的事,递归一般都能做到!
'''
# 写递归的过程
'''
1、写出临界条件
2、找出这一次和上一次关系
3、假设当前函数已经能用,调用自身计算上一次的结果,再求出本次的结果
'''
# 问题:输入一个大于1 的数,求1+2+3+....
def sum(n):
 if n==1:
  return 1
 else:
  return n+sum(n-1)
n=input("请输入:")
print("输出的和是:",sum(int(n)))
'''
输出:
请输入:4
输出的和是: 10
'''

递归实现打印自己硬盘目录层级

#__author:"吉*佳"
#date: 2018/10/21 0021
#function:
import os
def getAllDir(path):
 fileList = os.listdir(path)
 print(fileList)
 for fileName in fileList:
  fileAbsPath = os.path.join(path,fileName)
  if os.path.isdir(fileAbsPath):
   print("$$目录$$:",fileName)
   getAllDir(fileAbsPath)
  else:
   print("**普通文件!**",fileName)
 # print(fileList)
 pass
getAllDir("G:\")

输出结果如下:

深度遍历与广度遍历

(一)、深度优先搜索

说明:深度优先搜索借助栈结构来进行模拟
深度遍历示意图:

说明:
先把A压栈进去,在A出栈的同时把B C压栈进去,此时让B出栈的同时把DE压栈(C留着先不处理) 同理,在D出栈的时候,H I压栈,最后再从上往下
取出栈内还未出栈的元素,即达到深度优先遍历。
案例实践:利用栈来深度搜索打印出目录结构

程序代码:

#__author:"吉**"
#date: 2018/10/21 0021
#function:
# 深度优先遍历目录层级结构
import os
def getAllDirDP(path):
 stack = []
 # 压栈操作,相当于图中的A压入
 stack.append(path)
 # 处理栈,当栈为空的时候结束循环
 while len(stack) != 0:
  #从栈里取数据,相当于取出A,取出A的同时把BC压入
  dirPath = stack.pop()
  firstList = os.listdir(dirPath)
  #判断:是目录压栈,把该目录地址压栈,不是目录即是普通文件,打印
  for filename in firstList:
   fileAbsPath=os.path.join(dirPath,filename)
   if os.path.isdir(fileAbsPath):
    #是目录就压栈
    print("目录:",filename)
    stack.append(fileAbsPath)
   else:
    #是普通文件就打印即可,不压栈
    print("普通文件:",filename)
getAllDirDP(r'E:[AAA](千)全栈学习python18-10-21day7tempdir')

结果:

该过程示意图解释:(s-05-1部分)

(二)、广度优先搜索

原理分析:

说明:
      队列是 先进先出的模型。A先进队,在A出队的时候,C B入队,按图示,C出队,FG 入队,B出队,DE入队,
F出队,JK入队,G出队,无入队,D出队,H I入队,最后E J K H I出队,均无入队了,即每一层一层处理、
故:先进先出的队列结构实现了广度优先遍历。 先进后出的栈结构实现的是深度优先遍历。
代码实现:
其实深度优先和广度优先在代码书写上是差别不大的,基本相同,只是一个是使用栈结构(用列表进行模拟)
另一个(广度优先遍历)是使用了队列的数据结构来达到先进先出的目的。

#__author:"吉**"
#date: 2018/10/21 0021
#function:
# 广度优先搜索模拟
# 利用队列来模拟广度优先搜索
import os
import collections
def getAllDirIT(path):
 queue=collections.deque()
 #进队
 queue.append(path)
 #循环,当队列为空,停止循环
 while len(queue) != 0:
  #出队数据 这里相当于找到A元素的绝对路径
  dirPath = queue.popleft()
  # 找出跟目录下的所有的子目录信息,或者是跟目录下的文件信息
  dirList = os.listdir(dirPath)
  #遍历该文件夹下的其他信息
  for filename in dirList:
   #绝对路径
   dirAbsPath = os.path.join(dirPath,filename)
   # 判断:如果是目录dir入队操作,如果不是dir打印出即可
   if os.path.isdir(dirAbsPath):
    print("目录:"+filename)
    queue.append(dirAbsPath)
   else:
    print("普通文件:"+filename)
# 函数的调用
getAllDirIT(r'E:[AAA](千)全栈学习python18-10-21day7tempdir')

广度优先运行输出结构:

先图解:按照每一层从左到右遍历即可实现。

总结

以上所述是小编给大家介绍的python 递归深度优先搜索与广度优先搜索算法模拟实现 ,希望对大家有所帮助

原文链接:

https://www.jb51.net/article/149278.htm


识别图中二维码,领取python全套视频资料

python 递归深度优先搜索与广度优先搜索算法模拟实现的更多相关文章

  1. python 递归,深度优先搜索与广度优先搜索算法模拟实现

    一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件 2.找出这一次和上一次关系 3.假设 ...

  2. 【11】python 递归,深度优先搜索与广度优先搜索算法模拟实现

    一.递归原理小案例分析 (1)# 概述 递归:即一个函数调用了自身,即实现了递归 凡是循环能做到的事,递归一般都能做到! (2)# 写递归的过程 1.写出临界条件 2.找出这一次和上一次关系 3.假设 ...

  3. DFS_BFS(深度优先搜索 和 广度优先搜索)

    package com.rao.graph; import java.util.LinkedList; /** * @author Srao * @className BFS_DFS * @date ...

  4. 【Python排序搜索基本算法】之深度优先搜索、广度优先搜索、拓扑排序、强联通&Kosaraju算法

    Graph Search and Connectivity Generic Graph Search Goals 1. find everything findable 2. don't explor ...

  5. Depth-first search and Breadth-first search 深度优先搜索和广度优先搜索

    Depth-first search Depth-first search (DFS) is an algorithm for traversing or searching tree or grap ...

  6. 【js数据结构】图的深度优先搜索与广度优先搜索

    图类的构建 function Graph(v) {this.vertices = v;this.edges = 0;this.adj = []; for (var i = 0; i < this ...

  7. 递归——深度优先搜索(DFS)——以滑雪问题为例(自顶而下)

    一.问题:滑雪 问题描述:小明喜欢滑雪,为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.小明想知道在一个区域中最长底滑坡.区域由一个二维数组给出.数组的每 ...

  8. DFS或BFS(深度优先搜索或广度优先搜索遍历无向图)-04-无向图-岛屿数量

    给定一个由 '1'(陆地)和 '0'(水)组成的的二维网格,计算岛屿的数量.一个岛被水包围,并且它是通过水平方向或垂直方向上相邻的陆地连接而成的.你可以假设网格的四个边均被水包围. 示例 1: 输入: ...

  9. 常用算法2 - 广度优先搜索 & 深度优先搜索 (python实现)

    1. 图 定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合. 简单点的说:图由节点和边组成.一 ...

随机推荐

  1. android圆形图像

    在网上找了一下,最简单的是利用canvas的setXfermode,来控制图片重合部分的显示策略. 图片混合时,先画的是dst,后画的是src,各种混合的方式如下,其中圆形是dst,正方形是src: ...

  2. FragmentTabHost的应用

    原创)FragmentTabHost的应用(fragment学习系列文章之二) 时间 2014-04-14 00:11:46  CSDN博客 原文  http://blog.csdn.net/flyi ...

  3. QT4.8.5 源码编译记录

    今天想将以前的虚拟机的 QT4.8.5 集成到一个虚拟机里面,所以就重新编译了一次 QT4.8.5的源码 走了一点点小弯路,特此记录. 一.交叉编译器,不能直接从原来的虚拟机里面拷贝,必须使用官网的交 ...

  4. thinkphp 集成 twig模版引擎

    下载地址:https://github.com/fucongcong/ThinkPHPLevel/archive/master.zip 控制器格式为: <?php namespace Home\ ...

  5. Python 矩阵与矩阵以及矩阵与向量的乘法

    import numpy as np numpy模块的array相乘时,有两种方式:一是矩阵形式,二是挨个相乘. 需要用矩阵形式相乘时,则要用np.dot()函数. #矩阵与矩阵相乘a = np.ar ...

  6. 31Mybatis_mybatis和spring整合-mapper代理开发

    案例结构图:

  7. 什么是Mybatis

    MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBatis .iB ...

  8. Http缺省的请求方法是。(选择1项)

    A.PUT B.GET C.POST D.TRACE 解答:B

  9. 【BZOJ】1004: [HNOI2008]Cards(置换群+polya+burnside)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1004 学习了下polya计数和burnside引理,最好的资料就是:<Pólya 计数法的应用 ...

  10. PyQt5资料

    http://bbs.fishc.com/thread-59816-1-1.html https://pypi.python.org/pypi/PyQt5/ http://www.thehackeru ...