Gradient-Based Learning Applied to Document Recognition 部分阅读
卷积网络
卷积网络用三种结构来确保移位、尺度和旋转不变:局部感知野、权值共享和时间或空间降采样。典型的leNet-5如下图所示:
C1中每个特征图的每个单元和输入的25个点相连,这个5*5的区域被称为感知野。特征图的每个单元共享25个权值和一个偏置。其他特征图使用不同的权值(卷积枋),因
此可以得到不同类型的局部特征。卷积层的一个重要思想是,如果图像产生了位移,特征图输出将会产生相同数量的位移。这也是卷积网络位移和形变不变的原理。
特征图检测完毕后,它们的确切位置就不那么重要了,重要的是特征之间的相对位置。特征位置太准确不仅无利于模式识别,还会有害处,因为对不同的字符来说它们的位置是
不同的(所以特征之间的相对位置才是最重要的)。降低位置准确性可以通过下采样来降低分辨率来实现,同是也降低了输出对位移和形变的敏感性。每个单元计算四个输入的平均值(就是采样层),
将下采样的值乘一个训练系数加一个偏置(下采样层连接到sigmod的系数同要需要训练),然后将结果传给激活函数。训练系数和偏置控制了sigmod函数的非线性。如果这个系数很小的话,则每个单元类似于线性模型,下采样层所起的功能仅仅就是模糊输入;如果系数很大,则下采样操作可视为noisy OR或者 noisy AND(取决于偏置的大小)(存疑?)。
leNet-5
leNet-5有七层(不含输入),其中C1有156((5*5+1)*6)个可训练参数,122304(28*28*156)个连接。C2层的一个单元为C1中的2*2所得,输入到激活函数时它们共用一个
系数加一个偏置,所需的训练参数为(1+1)*6=12个,连接参数为(4+1)*6*14*14=5880个(我的理解是只在leNet-5中2*2的感知野值相同)。
C3层有16个特征图,由表格可以看出,每个特征图对S2中的特征图并非是全连接的。共有(25*3+1)*6+(25*4)*9+(25*6+1)=1516个训练参数,连接个数为
1516*10*10=151600个。S4同样为下采样层,有16*(1+1)=32个训练参数,有(2*2+1)*25*16=2000个连接。
C5有120个特征图,同样用5*5的卷积核,与S4层全连接,所以C5的特征是1*1的。之所以C5为卷积层而不是全连接层,是因为当le-Net5的输入增大时,特征图的维度也会大于
1*1。
F6全连接层,有84个单元,与C5全连接,共有(120+1)*84=10164个训练参数。同经经典的神经网络一样,F6乘权重加偏置然后送入到激活函数中。
下面是输出层(好吧,看的不是很明白),参考:http://blog.csdn.net/zouxy09/article/details/8781543
Gradient-Based Learning Applied to Document Recognition 部分阅读的更多相关文章
- 深度学习基础(一)LeNet_Gradient-Based Learning Applied to Document Recognition
作者:Yann LeCun,Leon Botton, Yoshua Bengio,and Patrick Haffner 这篇论文内容较多,这里只对部分内容进行记录: 以下是对论文原文的翻译: 在传统 ...
- 泡泡一分钟:Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition Peng Yin, Lingyun Xu, Z ...
- Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata
读了一篇paper,MSRA的Wei Wu的一篇<Learning Query and Document Similarities from Click-through Bipartite Gr ...
- 强化学习之 免模型学习(model-free based learning)
强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...
- Collaborative Spatioitemporal Feature Learning for Video Action Recognition
Collaborative Spatioitemporal Feature Learning for Video Action Recognition 摘要 时空特征提取在视频动作识别中是一个非常重要 ...
- Pros and Cons of Game Based Learning
https://www.gamedesigning.org/learn/game-based-learning/ I remember days gone by at elementary schoo ...
- 论文阅读 | Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition
源地址 arXiv:1712.07465: Recurrent Attentional Reinforcement Learning for Multi-label Image Recognition ...
- 论文阅读:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis
论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxi ...
- BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition 目录 BBN: Bi ...
随机推荐
- 【刷题】BZOJ 2753 [SCOI2012]滑雪与时间胶囊
Description a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi. ...
- python实现RSA加解密
# coding=utf-8 """ @author:Eleven created on:2018年10月30日 """ import bi ...
- cmakelist 定义字符串,替换到脚本中。
cmake_minimum_required(VERSION 2.6 FATAL_ERROR) cmake_policy(VERSION 2.6) # . Project Name project(s ...
- MySQL数据库中tinyint字段值为1,读取出来为true的问题
原文:https://blog.csdn.net/shuyou612/article/details/46788475 MySQL数据库中tinyint字段值为1,读取出来为true的问题 今天在 ...
- Spring MVC 使用Servlet原生API作为参数
具体看代码: @RequestMapping("/testServletAPI") public void testServletAPI(HttpServletRequest re ...
- 使用OpenCV进行标定(转载)
转载自牛猫靖 http://www.cnblogs.com/2008nmj/p/6278076.html 使用OpenCV进行相机标定 1. 使用OpenCV进行标定 相机已经有很长一段历史了.但是 ...
- 洛谷P1588 丢失的牛
P1588 丢失的牛 158通过 654提交 题目提供者JOHNKRAM 标签USACO 难度普及/提高- 时空限制1s / 128MB 提交 讨论 题解 最新讨论更多讨论 答案下载下来是对的,但 ...
- 我的emacs简易配置
;;------------语言环境字符集设置(utf-8)------------- (set-language-environment 'Chinese-GB) (set-keyboard-cod ...
- react-native安装react-navigation后出现package-lock.json文件的坑
npm5.0开始安装后回生成一个新的package-lock.json文件.以致初始化好的react-native项目引入的依赖被删除. 目前解决办法.使用facebook的yarn add 第三方组 ...
- 基于packstack的openstack单节点安装
一.安装源处理 1.更新base源为网易的源 cd /etc/yum.repos.d/ wget http://mirrors.163.com/.help/CentOS6-Base-163.repo ...