题意:任意区间求第k大数

思路:

  预处理:利用平方分割(分桶法)把区间切割成B = sqrt(n)大小的一块块,然后每个各自排序。

  二分第k大数x,接着就需要求[l,r]区间中x的排名,与k比较,将两边端点非完整桶的点进行扫描,最多B次,其余每个桶进行二分查找排名,可利用upper_bound(STL)即可快速实现。

评价:

  二分确实坑爹,不过搞了这一题也算对二分查找理解深入了些。

二分正确做法:

对于[0..n-1)有[0..m]满足性质其余不满足, 则应用[l, r)进行二分查找, 最后l一定是正确的。总是保证l不成立,r成立。

l = -, r = n;
while(l < r-)
{
int mid = (l+r)/;
if(check(mid))
l = mid;
else
r = mid;
}
cout << l << endl;

而若是[m, n-1]满足性质, 则应用(l, r]进行二分查找, 最后r一定正确,反之即可。

保证(l, r]正确性

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <utility>
#include <vector>
#include <queue>
#include <map>
#include <set>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
#define INF 0x3f3f3f3f
#define MAXN 200005
#define B 1000 using namespace std; vector<int> bucket[MAXN/B];
int a[MAXN], q[MAXN], n, m, x, y, k; int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i < n; i ++)
{
scanf("%d", &a[i]);
q[i] = a[i];
bucket[i/B].push_back(a[i]);
}
sort(q, q+n);
for(int i = ; i < MAXN/B; i ++)
sort(bucket[i].begin(), bucket[i].end());
while(m --)
{
scanf("%d%d%d", &x, &y, &k);
x--, y;
int l = -, r = n-; //(l, r]
while(l < r-)
{
int mid = (l+r)/;
int tx = x, ty = y;
int cnt = ;
for( ; tx < ty && tx%B != ; tx ++)
if(a[tx] <= q[mid]) cnt ++;
for( ; tx < ty && ty%B != ; ty --)
if(a[ty-] <= q[mid]) cnt ++;
for(int i = tx/B; i < ty/B; i ++)
cnt += upper_bound(bucket[i].begin(), bucket[i].end(), q[mid])-bucket[i].begin();
if(k <= cnt)
r = mid;
else
l = mid;
}
if(r < )
printf("-1");
else
printf("%d\n", q[r]);
}
return ;
}

例如本题若换成[l, r)正确性,稍加改动即可。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <cmath>
#include <utility>
#include <vector>
#include <queue>
#include <map>
#include <set>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
#define INF 0x3f3f3f3f
#define MAXN 200005
#define B 1000 using namespace std; vector<int> bucket[MAXN/B];
int a[MAXN], q[MAXN], n, m, x, y, k; int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i < n; i ++)
{
scanf("%d", &a[i]);
q[i] = a[i];
bucket[i/B].push_back(a[i]);
}
sort(q, q+n);
for(int i = ; i < MAXN/B; i ++)
sort(bucket[i].begin(), bucket[i].end());
while(m --)
{
scanf("%d%d%d", &x, &y, &k);
x--, y;
int l = , r = n; //[l, r)
while(l < r-)
{
int mid = (l+r)/;
int tx = x, ty = y;
int cnt = ;
for( ; tx < ty && tx%B != ; tx ++)
if(a[tx] < q[mid]) cnt ++;
for( ; tx < ty && ty%B != ; ty --)
if(a[ty-] < q[mid]) cnt ++;
for(int i = tx/B; i < ty/B; i ++)
cnt += lower_bound(bucket[i].begin(), bucket[i].end(), q[mid])-bucket[i].begin();
if(cnt < k)
l = mid;
else
r = mid;
}
printf("%d\n", q[l]);
}
return ;
}

POJ2104 (平方分割)二分查找理解。的更多相关文章

  1. 静态区间第k大(分桶法和平方分割)

    POJ 2104为例 思想: <挑战程序设计竞赛>中介绍的方法. 分桶法:把一排物品或者平面分成桶,每个桶分别维护自己内部的信息,已达到高效计算的目的. 设一共有n个数,每b个分到一个桶里 ...

  2. POJ2104 K-th Number 静态区间第k最值 平方分割

    干掉这道题的那一刻,我只想说:我终于**的AC了!!! 最终内存1344K,耗时10282ms,比起归并树.划分树以及其他各种黑科技,这个成绩并不算光彩⊙﹏⊙ 但至少,从最初的无数次TLE到最终的AC ...

  3. 二分查找——没有想象中的容易(详解各种变式,超深度理解,c++)

    int binarySearch(int[] nums, int target) { int left = 0; int right = nums.length - 1; // 注意 while(le ...

  4. 从一个NOI题目再学习二分查找。

    二分法的基本思路是对一个有序序列(递增递减都可以)查找时,测试一个中间下标处的值,若值比期待值小,则在更大的一侧进行查找(反之亦然),查找时再次二分.这比顺序访问要少很多访问量,效率很高. 设:low ...

  5. StringBuffer、StringBuilder、冒泡与选择排序、二分查找、基本数据类型包装类_DAY13

    1:数组的高级操作(预习) (1)数组:存储同一种数据类型的多个元素的容器. (2)特点:每个元素都有从0开始的编号,方便我们获取.专业名称:索引. (3)数组操作: A:遍历 public stat ...

  6. 实现 sqrt(x):二分查找法和牛顿法

    最近忙里偷闲,每天刷一道 LeetCode 的简单题保持手感,发现简单题虽然很容易 AC,但若去了解其所有的解法,也可学习到不少新的知识点,扩展知识的广度. 创作本文的思路来源于:LeetCode P ...

  7. js基本算法:冒泡排序,二分查找

    知识扩充: 时间复杂度:算法的时间复杂度是一个函数,描述了算法的运行时间.时间复杂度越低,效率越高. 自我理解:一个算法,运行了几次时间复杂度就为多少,如运行了n次,则时间复杂度为O(n). 1.冒泡 ...

  8. 用c语言编写二分查找法

    二分法的适用范围为有序数列,这方面很有局限性. #include<stdio.h> //二分查找法 void binary_search(int a[],int start,int mid ...

  9. 二分查找算法java实现

    今天看了一下JDK里面的二分法是实现,觉得有点小问题.二分法的实现有多种今天就给大家分享两种.一种是递归方式的,一种是非递归方式的.先来看看一些基础的东西. 1.算法概念. 二分查找算法也称为折半搜索 ...

随机推荐

  1. Java分布式:消息队列(Message Queue)

    Java分布式:消息队列(Message Queue) 引入消息队列 消息,是服务间通信的一种数据单位,消息可以非常简单,例如只包含文本字符串:也可以更复杂,可能包含嵌入对象.队列,是一种常见的数据结 ...

  2. spark[源码]-任务调度源码分析[三]

    前言 在上一篇文章中,我主要是讲解了DAG阶段的处理,spark是如何将一个job根据宽窄依赖划分出多个stage的,在最后一步中是将生成的TaskSet提交给了TaskSchedulerInmpl的 ...

  3. python3_Logging模块详解

    python的logging模块提供了通用的日志系统,可以方便第三方模块或应用使用. 简单使用 import logging # logging.config.fileConfig("./l ...

  4. qemu-nbd方式挂载qcow2镜像

    客户端配置 加载nbd模块 [root@centos sm]# rmmod nbd [root@centos sm]# modprobe nbd max_part=8 映射服务器的块设备到本地nbd设 ...

  5. C++通过HTTP请求Get或Post方式请求Json数据(转)

    原文网址:https://www.cnblogs.com/shike8080/articles/6549339.html #pragma once#include <iostream>#i ...

  6. 验证url格式

    //验证url var url=$("#address").val(); var regUrl = /^http[s]{0,1}:\/\/.+$/ ; if(url.match(r ...

  7. BeanFactory与ApplicationContext

    本文总结自:https://www.cnblogs.com/xiaoxi/p/5846416.html 我们常说的Spring容器(即Spring Ioc 容器),是如何创建bean的? BeanFa ...

  8. 起源游戏临时实体(Temp Entity)

    如何查看实体 https://wiki.alliedmods.net/Temp_Entity_Lists_(Source) 这里是部分游戏的临时实体列表 # 还可以通过在游戏内输入来获取游戏的临时实体 ...

  9. 混合开发的大趋势之一React Native之页面跳转

    转载请注明出处:王亟亟的大牛之路 最近事情有点多,没有长时间地连贯学习,文章也停了一个多礼拜,愧疚,有时间还是继续学习,继续写! 还是先安利:https://github.com/ddwhan0123 ...

  10. Linux系统巡检项目

    系统检测 1.检查系统类型 2.检查发行版本 3.检查内核版本 4.检查主机名称 5.检查是否启用SElinux 6.检测默认的语言/编码 7.检测uptime 8.检测最后启动时间等 CPU检查 1 ...