Given two integers, a and b, you should check whether a is divisible by b or not. We know that an integer a is divisible by an integer b if and only if there exists an integer c such that a = b * c.

Input

Input starts with an integer T (≤ 525), denoting the number of test cases.

Each case starts with a line containing two integers a (-10200 ≤ a ≤ 10200) and b (|b| > 0, b fits into a 32 bit signed integer). Numbers will not contain leading zeroes.

Output

For each case, print the case number first. Then print 'divisible' if a is divisible by b. Otherwise print 'not divisible'.

Sample Input

Output for Sample Input

6

101 101

0 67

-101 101

7678123668327637674887634 101

11010000000000000000 256

-202202202202000202202202 -101

Case 1: divisible

Case 2: divisible

Case 3: divisible

Case 4: not divisible

Case 5: divisible

Case 6: divisible

题意:给出两个数a, b,问能否被b整除。

题解:基础数论。简单的同余定理应用,将a作为字串储存,相当于每x位(和b同位)模b一次,得到余数时相当于将这个区间改写成这个余数,移动区间继续运算。最终余数为零时代表可以被整除,非零则否。

补充:其实可以想成这样,三位数就是百进制,四位数就是千进制的同余定理。

 #include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#include <math.h>
#define ll long long
using namespace std; char a[];
int main()
{
int T, x, s;
ll t, b;
scanf("%d", &T);
for(int i=; i<=T; i++)
{
scanf("%s %lld", a, &b);
x=strlen(a);
if(a[]=='-')//注意负数变正
{
s=;
t=a[]-'';
}
else
{
s=;
t=a[]-'';
}
t=t%abs(b);
for(int j=s; j<x; j++)
{
t=(t*+a[j]-'')%abs(b); //同余定理的应用
} if(t==)
{
printf("Case %d: divisible\n", i);
}
else
printf("Case %d: not divisible\n", i); } }

LightOJ1214 Large Division 基础数论+同余定理的更多相关文章

  1. LightOJ1214 Large Division

    /* LightOJ1214 Large Division http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1 ...

  2. 51nod 1433 0和5【数论/九余定理】

    1433 0和5 题目来源: CodeForces 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 小K手中有n张牌,每张牌上有一个一位数的数,这个 ...

  3. LightOJ1214 Large Division —— 大数求模

    题目链接:https://vjudge.net/problem/LightOJ-1214 1214 - Large Division    PDF (English) Statistics Forum ...

  4. L - Large Division (大数, 同余)

    Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...

  5. FZU 1057 a^b 【数论/九余定理】

    Accept: 1164    Submit: 3722Time Limit: 1000 mSec    Memory Limit : 32768 KB Problem Description 对于任 ...

  6. K - Large Division 判断a是否是b的倍数。 a (-10^200 ≤ a ≤ 10^200) and b (|b| > 0, b fits into a 32 bit signed integer). 思路:取余;

    /** 题目:K - Large Division 链接:https://vjudge.net/contest/154246#problem/K 题意:判断a是否是b的倍数. a (-10^200 ≤ ...

  7. 1214 - Large Division -- LightOj(大数取余)

    http://lightoj.com/volume_showproblem.php?problem=1214 这就是一道简单的大数取余. 还想还用到了同余定理: 所谓的同余,顾名思义,就是许多的数被一 ...

  8. Light oj 1214-Large Division (同余定理)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1214 题意很好懂,同余定理的运用,要是A数被B数整除,那么A%B等于0.而A很大,那我 ...

  9. (大数 求余) Large Division Light OJ 1214

    Large Division Given two integers, a and b, you should check whether a is divisible by b or not. We ...

随机推荐

  1. 20162320MyOD重做版

    博客说明 由于上次的MyOD.java没有得分,所以这次我重做了这个java,代码是自己完成的,请教了一些同学的思路.故补交一篇博客来说明我对每一步代码的编写的想法以及理解. 代码片段及理解 1.先创 ...

  2. ORM(object relational Maping)

    ORM即对象关系映射,是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM是通过使用描述对象和数据库之间映射的元数据,将java程序中的对象自动持久化到关系数据库中.本质上 ...

  3. 404 Note Found队——现场编程

    目录 组员职责分工 github 的提交日志截图 程序运行截图 程序运行环境 GUI界面 基础功能实现 运行视频 LCG算法 过滤(降权)算法 算法思路 红黑树 附加功能一 背景 实现 附加功能二(迭 ...

  4. C#高级编程 (第六版) 学习 第一章:.Net体系结构

    第一章 .Net体系结构 1,公共语言运行库(Common Language Runtime, CLR) .Net Framework的核心是其运行库的执行环境,称为公共语言运行库,或.Net运行库. ...

  5. [并查集] More is Better

    题目描述 Mr Wang wants some boys to help him with a project. Because the project is rather complex, the ...

  6. 框架整合小小总结【SSH】注解式

    Spring 注解式注册 bean: 大致分为以下几步: 开启 context 空间支持 开启自动扫描功能,指定扫描包路径 使用注解配置 bean (使用@Component 注解) 给 bean 注 ...

  7. Hibernate 中 load() 和 get() 的区别

    get 和 load 方式都是是根据 id 取得一个记录.下边详细说一下 get 和 load 的不同,因为有些时候为了对比也会把 find 加进来. 1.从返回结果上对比: load 方式检索不到的 ...

  8. Vue2.0 render:h => h(App)

    new Vue({ router, store, //components: { App } vue1.0的写法 render: h => h(App) vue2.0的写法 }).$mount( ...

  9. SQL Inserted和deleted详解

    create trigger updateDeleteTime on user for update as begin update user set UpdateTime=(getdate()) f ...

  10. LoadRunner脚本增强技巧之自动关联

    为什么要做关联,原理很简单,录制脚本的时候,服务器会给用户一个唯一的认证码来进行操作,当再次回放脚本的时候服务器又会给一个全新的认证码,而录制好的脚本是写死的,还是拿老的认证码提交,肯定会导致脚本执行 ...