题目链接

戳我

\(Description\)

有若干限制,需要求一个\(1\)到\(n\)的排列,每个限制\((x,y)\)表示\(x\)必须在\(j\)之前,并要求所求的排列满足所有限制并让\(1\)的位置尽量靠前,在此基础上让\(2\)的位置尽量靠前,以此类推.

\(n<=100000\)

\(Solution\)

这题直接拓扑排序选字典序最小的显然不行,因为题目要求不是问字典序最要,而是要:

满足所有限制并让\(1\)的位置尽量靠前,在此基础上让\(2\)的位置尽量靠前,以此类推

那么我们显然需要想一想别的办法了.

那么想一想,怎么样满足条件呢?

如果把越大的数放在后面,那么前面的小数都能够尽量靠前。

这样便符合条件了

至于做法:

建反向图用堆跑拓扑排序,每次取出入度为\(0\)且最大的点.

最后反序输出就好了.

\(Code\)

#include<bits/stdc++.h>
#define int long long
using namespace std;
typedef long long ll;
int read() {
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*f;
}
priority_queue<int> q;
struct node {
int to,next;
}a[100010<<1];
int head[100010],cnt,vis[100010],ans[100010];
void add(int x,int y){
a[++cnt].to=y;
a[cnt].next=head[x];
head[x]=cnt;
}
void solve(){
memset(vis,0,sizeof(vis)),memset(head,0,sizeof(head)),cnt=0;
int n=read(),m=read(),x,y,v,tot=0;
for(int i=1;i<=m;i++)
x=read(),y=read(),add(y,x),vis[x]++;
for(int i=1;i<=n;i++)
if(!vis[i])
q.push(i);
while(!q.empty()){
int now=q.top();
q.pop();
for(int i=head[now];i;i=a[i].next){
v=a[i].to,vis[v]--;
if(!vis[v])
q.push(v);
}
ans[++tot]=now;
}
if(tot!=n)
puts("Impossible!");
else{
for(int i=n;i>=1;i--)
printf("%d ",ans[i]);
printf("\n");
}
}
main(){
int T=read();
while(T--)
solve();
}

「HNOI 2015」菜肴制作的更多相关文章

  1. 「HNOI 2015」实验比较

    \(Description\) 有\(n\)个元素,对于每个元素\(x_i\)最多知道一个形如\(x_j < x_i\)或\(x_j=x_i\)的条件,问有多少合法的序列.合法的序列满足每个元素 ...

  2. 「HNOI 2015」亚瑟王

    \(Description\) 有\(n\)张卡牌,每一张卡牌有\(p_i\)的概率发动,并造成\(d_i\)点伤害.一共有\(r\)轮,每一轮按照编号从小到大依次考虑,如果这张牌已经发动过则跳过该牌 ...

  3. 「HNOI 2015」落忆枫音

    题目链接 戳我 \(Description\) 给一张\(n\)割点\(m\)条边的\(DAG\),保证点\(1\)不存在入边,现在需要在\(DAG\)中加入一条不在原图中的边\((x,y)\),求这 ...

  4. 「HNOI2015」菜肴制作

    「HNOI2015」菜肴制作 这道题想到了其实还挺水的,一开始我直接用小根堆拓扑然后就爆0了,然后我又用十万个堆搜索,T30,还是xkl告诉我要倒着拓扑. 首先要建反图,对于入度为0的点,较小的点先输 ...

  5. LOJ#3054. 「HNOI 2019」鱼

    LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想 ...

  6. 【LOJ】#2114. 「HNOI2015」菜肴制作

    题解 把所有边反向 从小到大枚举每个点,把每个点能到达的点挑出来,判完无解后显然是一个DAG,然后在上面求一个编号最大的拓扑序,把这些点全部标记为已选,把每次求得的拓扑序倒序输出 代码 #includ ...

  7. 「HNOI 2019」白兔之舞

    一道清真的数论题 LOJ #3058 Luogu P5293 题解 考虑$ n=1$的时候怎么做 设$ s$为转移的方案数 设答案多项式为$\sum\limits_{i=0}^L (sx)^i\bin ...

  8. 「HNOI 2016」 序列

    \(Description\) 给你一个序列,每次询问一个区间,求其所有子区间的最小值之和 \(Solution\) 这里要用莫队算法 首先令\(val\)数组为原序列 我们考虑怎么由一个区间\([l ...

  9. 「HNOI 2014」 江南乐

    \(Description\) \(n\)堆石子,每堆石子有\(s_i\)个,两个人轮流操作,每次可以将一对不少于\(F\)的石子尽量平均分成\(m\)堆,\(m\)每次自选,不能操作者输.共有\(T ...

随机推荐

  1. flask 常见关系模板代码

    以下罗列了使用关系型数据库中常见关系定义模板代码 一对多示例场景:用户与其发布的帖子(用户表与帖子表)角色与所属于该角色的用户(角色表与多用户表)示例代码class Role(db.Model): & ...

  2. html 资源

  3. python 中类的初始化过程

    首先元类中的__new__被调用 所有使用该元类的类都会调用一次,不管其有没有初始化,所以元类__new__的作用是修改/验证类的定义 返回的是一个元类的实例,即一个类的定义 元类的__init__由 ...

  4. Render Texture

    [Render Texture] Render Textures are special types of Textures that are created and updated at runti ...

  5. 109. Convert Sorted List to Binary Search Tree (List; Divide-and-Conquer, dfs)

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  6. Opencv3 形态学操作

    #include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...

  7. Spring MVC拦截器(Interceptor )详解

    处理器拦截器简介 Spring Web MVC的处理器拦截器(如无特殊说明,下文所说的拦截器即处理器拦截器)类似于Servlet开发中的过滤器Filter,用于对处理器进行预处理和后处理. 常见应用场 ...

  8. 设计模式(java的23种设计模式)

    转自:leshui http://blog.csdn.net/leshui/article/details/11951 在java版看见了这篇文章,作者以轻松的语言比喻了java的32种模式,有很好的 ...

  9. JS和DOM的关系

    DOM对象 DOM实际上是以面向对象方式描述的文档模型.DOM定义了表示和修改文档所需的对象.这些对象的行为和属性以及这些对象之间的关系. 根据W3C DOM规范,DOM是HTML与XML的应用编程接 ...

  10. windows 安装 mysql5.7.17

    下载mysql 进入官网:https://www.mysql.com/ 单击[Downloads]选项卡 最下面有个[  MySQL Community Edition (GPL)],单击[Commu ...