Digital image processing(数字图像处理)
In computer science, digital image processing is the use of computer algorithms to perform image processing on digital images.[1] As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and signal distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
History
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s at the Jet Propulsion Laboratory, Massachusetts Institute of Technology, Bell Laboratories, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone, character recognition, and photograph enhancement.[2] The cost of processing was fairly high, however, with the computing equipment of that era. That changed in the 1970s, when digital image processing proliferated as cheaper computers and dedicated hardware became available. Images then could be processed in real time, for some dedicated problems such as television standards conversion. As general-purpose computers became faster, they started to take over the role of dedicated hardware for all but the most specialized and computer-intensive operations. With the fast computers and signal processors available in the 2000s, digital image processing has become the most common form of image processing and generally, is used because it is not only the most versatile method, but also the cheapest.
Digital image processing technology for medical applications was inducted into the Space Foundation Space Technology Hall of Fame in 1994.[3]
Tasks
Digital image processing allows the use of much more complex algorithms, and hence, can offer both more sophisticated performance at simple tasks, and the implementation of methods which would be impossible by analog means.
In particular, digital image processing is the only practical technology for:
Some techniques which are used in digital image processing include:
- Anisotropic diffusion
- Hidden Markov models
- Image editing
- Image restoration
- Independent component analysis
- Linear filtering
- Neural networks
- Partial differential equations
- Pixelation
- Principal components analysis
- Self-organizing maps
- Wavelets
Digital image transformations
- Filtering
- Image padding in Fourier domain filtering
- Filtering Code Examples
- Affine transformations
Applications
- Digital camera images
- Film
See also
References
- Pragnan Chakravorty, "What Is a Signal? [Lecture Notes]," IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 175-177, Sept. 2018. https://doi.org/10.1109/MSP.2018.2832195
- Jump up^ Azriel Rosenfeld, Picture Processing by Computer, New York: Academic Press, 1969
- Jump up^ "Space Technology Hall of Fame:Inducted Technologies/1994". Space Foundation. 1994. Archived from the original on 4 July 2011. Retrieved 7 January 2010.
- Jump up^ Gonzalez, Rafael (2008). Digital Image Processing, 3rd. Pearson Hall. ISBN 9780131687288.
- Jump up^ Gonzalez, Rafael (2008). Digital Image Processing, 3rd. Pearson Hall. ISBN 9780131687288.
- Jump up^ A Brief, Early History of Computer Graphics in Film Archived 17 July 2012 at the Wayback Machine., Larry Yaeger, 16 August 2002 (last update), retrieved 24 March 2010
Theory:Detection theory Discrete signal Estimation theory Nyquist–Shannon sampling theorem
Sub-fields:Audio signal processing Digital image processingSpeech processing Statistical signal processing
Techniques:Advanced Z-transform Bilinear transform Constant-Q transform Discrete Fourier transform (DFT) Discrete-time Fourier transform (DTFT) Impulse invariance Integral transform Laplace transform Matched Z-transform method Post's inversion formula Starred transform Z-transform Zak transform
Sampling:Aliasing Anti-aliasing filter Downsampling Nyquist rate / frequency Oversampling Quantization Sampling rate Undersampling Upsampling
Digital image processing(数字图像处理)的更多相关文章
- Digital Imaging Processing 数字图像处理
8-Bit and 16-Bit Images 关于量化压缩与量化补偿 RGB Bayer Color分析 彩色CCD/CMOS的格式和计算机中的读取格式
- 数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017
实验要求: Objective: To know how to implement image enhancement for color images by histogram processing ...
- 数字图像处理技术在TWaver可视化中的应用
数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程.常用的图像处理方法有图像增强.复原.编码.压缩等,数 ...
- Digital Image Processing 学习笔记3
第三章 灰度变换与空间滤波 3.1 背景知识 3.1.1 灰度变换和空间滤波基础 本章节所讨论的图像处理技术都是在空间域进行的.可以表示为下式: $$g(x, y) = T[f(x,y)]$$ 其中$ ...
- FPGA与数字图像处理技术
数字图像处理方法的重要性源于两个主要应用领域: 改善图像信息以便解释. 为存储.传输和表示而对图像数据进行处理,以便于机器自动理解. 图像处理(image processing): 用计算机对图像进行 ...
- 《数字图像处理原理与实践(MATLAB版)》一书之代码Part1
本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part1(P1~42).代码运行结果请參见原书配图. P20 I = imread('lena.jpg');BW1 = ...
- 数字图像处理实验(总计23个)汇总 标签: 图像处理MATLAB 2017-05-31 10:30 175人阅读 评论(0)
以下这些实验中的代码全部是我自己编写调试通过的,到此,最后进行一下汇总. 数字图像处理实验(1):PROJECT 02-01, Image Printing Program Based on Half ...
- 数字图像处理学习笔记之一 DIP绪论与MATLAB基础
写在前面的话 数字图像处理系列的学习笔记是作者结合上海大学计算机学院<数字图像处理>课程的学习所做的笔记,使用参考书籍为<冈萨雷斯数字图像处理(第二版)(MATLAB版)>,同 ...
- 信号处理的好书Digital Signal Processing - A Practical Guide for Engineers and Scientists
诚心给大家推荐一本讲信号处理的好书<Digital Signal Processing - A Practical Guide for Engineers and Scientists>[ ...
随机推荐
- canvas之画矩形
<canvas id="canvas" width="600" height="500" style="background ...
- java传递是引用的拷贝,既不是引用本身,更不是对象
java传递是引用的拷贝,既不是引用本身,更不是对象 2008-09-16 04:27:56| 分类: Java SE|举报|字号 订阅 下载LOFTER客户端 1. 简单类型是按值 ...
- UVA-11292Dragon of Loowater
/* The Dragon of Loowater Once upon a time, in the Kingdom of Loowater, a minor nuisance turned into ...
- sublime text安装插件
http://www.sublimetext.com/ 安装Sublime Text 2插件的方法: 1.直接安装 安装Sublime text 2插件很方便,可以直接下载安装包解压缩到Package ...
- 01——微信小程序官方demo讲解——文件结构
1.环境概览 首先环境配置的部分略过,打开小程序开发工具.选择一个空目录,即可开始一个demo项目. 其中新建成功后的目录如图所示: 2.文件结构描述 如图所示,左边是界面展示,右边是目录结构. 目录 ...
- django No migrations to apply 问题解决
最近在用django写项目,有的时候字段不够用,需要models增加字段,但是想回滚或者修改或者修改了属性等,例如忘了添加meta table于是操作了migrations 导致makemigrati ...
- 解析 Ceph: FileJournal 的作用
很多的用户在提到 Ceph 性能的时候都会提到“写放大”这点,实际上就是 FileJournal 在起作用.只要使用默认的 FileStore,所有数据包括 metadata 都会在 FileJo ...
- Django 模型层(2)
多表操作: 创建模型: 作者模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是一对一的关系(one-to-one) 出版商模型:出版商有名称,所在城市以及em ...
- svn代码回滚和合并的利器svn merge
1.svn merge可以将两个对象的diff体现到本地工作目录上. (1)两个对象 这个两个对象可以是同一个svn url的两个revison,也可以是不用的url,比如分支和主干. (2)diff ...
- Python实践练习:生成随机的测验试卷文件
题目 假如你是一位地理老师,班上有 35 名学生,你希望进行美国各州首府的一个小测验.不妙的是,班里有几个坏蛋,你无法确信学生不会作弊.你希望随机调整问题的次序,这样每份试卷都是独一无二的,这让任何人 ...