Alex网络
alexNet共有八层网络
卷积层1:输入224*224*3 卷积核11*11*3*96 步长为4 然后是ReLU、局部归一化、3*3步长为2的最大值池化
卷积层2:输入为28*28*96 卷积核5*5*96*256 然后是ReLU、局部归一化、3*3步长为2的最大值池化
卷积层3:输入14*14*256 卷积核3*3*256*384 然后是ReLU
卷积层4:输入14*14*384 卷积核3*3*384*384 然后是ReLU
卷积层5:输入14*14*384 卷积核3*3*384*256 然后是ReLU、3*3步长为2的最大值池化
全连接层1:输入6*6*256 输出4096 然后是ReLU、DropOut
全连接层2:输入4096 输出4096 然后是ReLU、DropOut
全连接层3:输入4096 输出1000
具体图像地址:
http://app.liuchengtu.com/#R46a424714855ca651e9334b1ad1ce212
●第一层:
①输入图片为224x 224 x3, 表示长宽是224个像素,RGB彩色图通道为3通道,所以还要乘以3.(学界普遍认为论文中说的224不太合适,讲道理应该是227的大小才对,这也成为一个悬案),
②然后采用了96个11 x 11 x 3 的filter。在stride为4的设置下,对输入图像进行了卷积操作。所以经过这一卷积后的操作,输出就变成了55 x 55 x96 的data map。这三个数字的由来:(227-11)/ 4 + 1 = 55,96就是滤波器的个数。
③然后经过激活函数ReLu,再进行池化操作-pooling:滤波器的大小为3 x 3,步长stride为2. 所以池化后的输出为27x 27 x 96
(55-3)/ 2 + 1 =27. 96仍为原来的深度。
④LRN,局部响应归一化。后来大家都认为这个操作没有什么太大的作用,所以后面的网络几乎都没有这个操作,我也就不提了。
●其他第2、3、4、5层的计算过程类似。
●第六层:本层的输入为6 x 6 x 256,全连接层其实就是一个矩阵运算,它完成一个空间上的映射。所以把输入看成一个列向量X,维度为9216(6 x 6 x 256),也就是你可以把输入看成一个9216 x 1的矩阵。
然后和参数矩阵W相乘,参数矩阵W你此时设置为4096 x 9216
所以最后本全连接层的输出就是 矩阵相乘Y = W·X得 4096 x 1的矩阵
●第八层:第八层的输出就为1000 x 1的矩阵,即1000维度的一个列向量,对应softmax regression的1000个标签
Alex网络的更多相关文章
- AlexNet 网络详解及Tensorflow实现源码
版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭 ...
- LetNet、Alex、VggNet分析及其pytorch实现
简单分析一下主流的几种神经网络 LeNet LetNet作为卷积神经网络中的HelloWorld,它的结构及其的简单,1998年由LeCun提出 基本过程: 可以看到LeNet-5跟现有的conv-& ...
- 深度学习基础(二)AlexNet_ImageNet Classification with Deep Convolutional Neural Networks
该论文是深度学习领域的经典之作,因为自从Alex Krizhevsky提出AlexNet并使用GPUs大幅提升训练的效率之后,深度学习在图像识别等领域掀起了研究使用的热潮.在论文中,作者训练了一个含有 ...
- 0005-20180422-自动化第六章-python基础学习笔记
day6 内容回顾: 1. 变量 2. 条件 3. while循环 4. 数据类型 - int - bit_length - bool - True/False - str - upper - low ...
- 深度学习原理与框架-Alexnet(迁移学习代码) 1.sys.argv[1:](控制台输入的参数获取第二个参数开始) 2.tf.split(对数据进行切分操作) 3.tf.concat(对数据进行合并操作) 4.tf.variable_scope(指定w的使用范围) 5.tf.get_variable(构造和获得参数) 6.np.load(加载.npy文件)
1. sys.argv[1:] # 在控制台进行参数的输入时,只使用第二个参数以后的数据 参数说明:控制台的输入:python test.py what, 使用sys.argv[1:],那么将获得w ...
- 学习TensorFlow,调用预训练好的网络(Alex, VGG, ResNet etc)
视觉问题引入深度神经网络后,针对端对端的训练和预测网络,可以看是特征的表达和任务的决策问题(分类,回归等).当我们自己的训练数据量过小时,往往借助牛人已经预训练好的网络进行特征的提取,然后在后面加上自 ...
- Python之路第一课Day8--随堂笔记(socket 承接上节---网络编程)
本节内容 Socket介绍 Socket参数介绍 基本Socket实例 Socket实现多连接处理 通过Socket实现简单SSH 通过Socket实现文件传送 作业:开发一个支持多用户在线的FTP程 ...
- 事件驱动之Twsited异步网络框架
在这之前先了解下什么是事件驱动编程 传统的编程是如下线性模式的: 开始--->代码块A--->代码块B--->代码块C--->代码块D--->......--->结 ...
- [Android Pro] 网络流量安全测试工具Nogotofail
reference to : http://www.freebuf.com/tools/50324.html 从严重的HeartBleed漏洞到苹果的gotofail 漏洞,再到最近的SSL v3 P ...
随机推荐
- 原创SQlServer数据库生成简单的说明文档包含(存储过程、视图、数据库批量备份)小工具(附源码)
这是一款简单的数据库文档生成工具,主要实现了SQlServer生成说明文档的小工具,目前不够完善,主要可以把数据库的表以及表的详细字段信息,导出到 Word中,可以方便开发人员了解数据库的信息或写技术 ...
- 谈下mysql预处理基础
传统的操作数据库方法有两种: 先写一条sql语句,然后通过mysqli->query($sql)去操作数据库(此处使用的是mysqli扩展库).这样操作并不会有什么大的错误,但是当要插入上千条上 ...
- javascript中加号(+)操作符的作用
// 16进制转换:+”0xFF”; // -> 255 // 获取当前的时间戳,相当于`new Date().getTime()`:+new Date(); // 比 ...
- 07-HTML-内嵌标签
<html> <head> <title>内嵌标签学习</title> <meta charset="utf-8"/> ...
- vue-cli创建的项目的目录结构及说明
转自:http://blog.csdn.net/qq_34543438/article/details/72868546?locationNum=3&fps=1 一. ├── build ...
- CSS3效果:animate实现点点点loading动画效果(一)
实现如图所示的点点点loading效果: 一:CSS3 animation实现代码 html代码: 提交订单中<span class="ani_dot">...< ...
- RobotFramework 官方demo Quick Start Guide rst配置文件分析
RobotFramework官方demo Quick Start Guide rst配置文件分析 by:授客 QQ:1033553122 博客:http://blog.sina.com.c ...
- jsfiddle 使用教程
最近有许多的Css 3 demo,因此为了方便查阅,就将demo部分放在jsfiddle ,方便日后翻阅. 这是 JSFIDDLE 的官网文档,都是英文,不过对照看还是可以的:官方文档 HTML区域: ...
- Caused by:org.springframework.beans.factory.NoSuchBeanDefinitionException: No qualifying bean of type "" available: expected at least 1 bean which qualifies as autowire candidate
项目使用spring, mybatis.因为分了多个模块,所以会这个模块引用了其它模块的现在,结果使用Junit测试的时候发现有两个模块不能自动注入dao和service问题.解决后在此记录一下. 解 ...
- 微服务扩展新途径:Messaging
[编者按]服务编排是微服务设置的一个重要方面.本文在利用 ActiveMQ 虚拟话题来实现这一目标的同时,还会提供实用性指导.文章系国内 ITOM 管理平台 OneAPM 编译呈现. 目前,微服务使用 ...