TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu
import tensorflow as tf
import numpy as np def add_layer(inputs, in_size, out_size, n_layer, activation_function=None):
# add one more layer and return the output of this layer
layer_name = 'layer%s' % n_layer
with tf.name_scope(layer_name):
with tf.name_scope('Jason_niu_weights'):
Weights = tf.Variable(tf.random_normal([in_size, out_size]), name='W')
tf.summary.histogram(layer_name + '/weights', Weights)
with tf.name_scope('Jason_niu_biases'):
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name='b')
tf.summary.histogram(layer_name + '/biases', biases)
with tf.name_scope('Jason_niu_Wx_plus_b'):
Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b, )
tf.summary.histogram(layer_name + '/outputs', outputs)
return outputs # Make up some real data
x_data = np.linspace(-1, 1, 300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # define placeholder for inputs to network
with tf.name_scope('Jason_niu_inputs'):
xs = tf.placeholder(tf.float32, [None, 1], name='x_input')
ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # add hidden layer
l1 = add_layer(xs, 1, 10, n_layer=1, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, n_layer=2, activation_function=None) # the error between prediciton and real data
with tf.name_scope('Jason_niu_loss'):
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1]))
tf.summary.scalar('Jason_niu_loss', loss) with tf.name_scope('Jason_niu_train'):
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) sess = tf.Session()
merged = tf.summary.merge_all()
writer = tf.summary.FileWriter("logs3/", sess.graph)
# important step
sess.run(tf.global_variables_initializer()) for i in range(1000):
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
result = sess.run(merged,feed_dict={xs: x_data, ys: y_data})
writer.add_summary(result, i)
TF:TF之Tensorboard实践:将神经网络Tensorboard形式得到events.out.tfevents文件+dos内运行该文件本地服务器输出到网页可视化—Jason niu的更多相关文章
- TF之NN:matplotlib动态演示深度学习之tensorflow将神经网络系统自动学习并优化修正并且将输出结果可视化—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_ ...
- Tensorflow BatchNormalization详解:2_使用tf.layers高级函数来构建神经网络
Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔 ...
- TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- [ 搭建Redis本地服务器实践系列二 ] :图解CentOS7配置Redis
上一章 [ 搭建Redis本地服务器实践系列一 ] :图解CentOS7安装Redis 详细的介绍了Redis的安装步骤,那么只是安装完成,此时的Redis服务器还无法正常运作,我们需要对其进行一些配 ...
- [ 搭建Redis本地服务器实践系列一 ] :图解CentOS7安装Redis
上一章 [ 搭建Redis本地服务器实践系列 ] :序言 作为开场白介绍了下为什么要写这个系列,从这个章节我们就开始真正的进入正题,开始搭建我们本地的Redis服务器.那么关于Redis的基本概念,什 ...
- [ 搭建Redis本地服务器实践系列 ] :序言
说起来,是在一个气候适宜的下午,虽然临近下班,不过办公室里还是充满了忙碌的身影,不时的还会从办公区传来小伙伴们为了一个需求而激烈争论的声音,自从入了互联网这个行业,说实话,也就很少休息了,当然了也不全 ...
- [ 搭建Redis本地服务器实践系列三 ] :图解Redis客户端工具连接Redis服务器
上一章 [ 搭建Redis本地服务器实践系列二 ] :图解CentOS7配置Redis 介绍了Redis的初始化脚本文件及启动配置文件,并图解如何以服务的形式来启动.终止Redis服务,可以说我们的 ...
- GA:GA优化BP神经网络的初始权值、阈值,从而增强BP神经网络的鲁棒性—Jason niu
global p global t global R % 输入神经元个数,此处是6个 global S1 % 隐层神经元个数,此处是10个 global S2 % 输出神经元个数,此处是4个 glob ...
- 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu
对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...
随机推荐
- Java 调用翻译软件实现英文文档翻译
前言: 因最近要进行OCP的考试准备.看着大堆英文文档确实有些疼痛.又因文档内容有点大,又需要逐一去翻译 又很费时费力.于是 百度了一番,找到一些 可以使用Java来调用百度翻译软件的API( 注:( ...
- 基于 Confluence 6 数据中心的 SAML 单点登录设置你的身份提供者
如果你希望 Confluence 提供 SSO,将需要将 Confluence 添加到你的 IdP 中.一些后续的步骤将会与你的 IdP 有关,但是你通常需要: 在你的 IdP 中定义一个 'appl ...
- Java测试代码(很不完整,建议大家别看,过几天会再发一次难的版本)
package ATM; import java.io.BufferedReader; import java.io.InputStreamReader; class Account{ priv ...
- python用unittest+HTMLTestRunner+csv的框架测试并生成测试报告
直接贴代码: import csv # 导入scv库,可以读取csv文件from selenium import webdriverimport unittestfrom time import s ...
- react native 打包Ignoring return value of function declared with warn_unused_result attribute
从 github上下载 项目 用于学习查看别人的代码, 当执行完npm install 用xcode 打开 发现俩个错误提示Ignoring return value of function dec ...
- 操作dom获取datatable中的某一行的某一列的数据
需求描述:编辑的时候,点击的那一行,进入后台的验证方法,验证通过后,再进入编辑页面,进入的时候需要把本行<tr>数据中的某一列<td>的值传递过去 思路表述:之前我想的是,给列 ...
- select下拉框使用完毕后,重置按钮使其清空
需求描述:select下拉框后边有两个按钮,一个查询,一个重置,点击重置,select会清空之前选择的那个查询条件 解决思路:卧槽,这不so easy 么,用那个jQ封装的trigger函数搞定啊,对 ...
- MYSQL安装报错 -- 出现Failed to find valid data directory.
运行环境:windows10数据库版本:mysql.8.0.12安装方式:rpm包直接安装 问题描述:mysql初始化的时候找不到对应的数据库存储目录 报错代码: 2018-10-13T03:29:2 ...
- laravel 迁移枚举
$table->enum('type', ['replace', 'warning'])->comment('类型');
- matlab转c++代码实现(主要包含C++ std::vector,std::pair学习,包含数组与常数相乘,数组相加减,将数组拉成一维向量,图片的读入等内容)
MATLAB部分: xmap = repmat( linspace( -regionW/2, regionW/2, regionW), regionH, 1 );%linspace [x1,x2,N] ...