Shuffle过程

在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。Spark作为MapReduce框架的一种实现,也实现了shuffle的逻辑。

原文链接:http://www.cnblogs.com/yjd_hycf_space/p/7513656.html


Shuffle

Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。

下面这幅图清晰地描述了MapReduce算法的整个流程,其中shuffle phase是介于Map phase和Reduce phase之间

 

概念上shuffle就是一个沟通数据连接的桥梁,那么实际上shuffle(partition)这一部分实现的机制如下。

 

1、Spark Shuffle

以图为例简单描述一下Spark中shuffle的整一个流程:

l 首先每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是M×RM×R,其中MM是Map的个数,RR是Reduce的个数

l 其次Mapper产生的结果会根据设置的partition算法填充到每个bucket中去。这里的partition算法是可以自定义的,当然默认的算法是根据key哈希到不同的bucket中去。

l 当Reducer启动时,它会根据自己task的id和所依赖的Mapper的id从远端或是本地的block manager中取得相应的bucket作为Reducer的输入进行处理。

这里的bucket是一个抽象概念,在实现中每个bucket可以对应一个文件,可以对应文件的一部分或是其他等。

Apache Spark 的 Shuffle 过程与 Apache Hadoop 的 Shuffle 过程有着诸多类似,一些概念可直接套用,例如,Shuffle 过程中,提供数据的一端,被称作 Map 端,Map 端每个生成数据的任务称为 Mapper,对应的,接收数据的一端,被称作 Reduce 端,Reduce 端每个拉取数据的任务称为 Reducer,Shuffle 过程本质上都是将 Map 端获得的数据使用分区器进行划分,并将数据发送给对应的 Reducer 的过程

 

2、Shuffle Write

在Spark 0.6和0.7的版本中,对于shuffle数据的存储是以文件的方式存储在block manager中,与rdd.persist(StorageLevel.DISk_ONLY)采取相同的策略,可以参看:

可以看到Spark在每一个Mapper中为每个Reducer创建一个bucket,并将RDD计算结果放进bucket中。需要注意的是每个bucket是一个ArrayBuffer,也就是说Map的输出结果是会先存储在内存。

接着Spark会将ArrayBuffer中的Map输出结果写入block manager所管理的磁盘中,这里文件的命名方式为:shuffle_ + shuffle_id + "_" + map partition id + "_" + shuffle partition id。

早期的shuffle write有两个比较大的问题:

l Map的输出必须先全部存储到内存中,然后写入磁盘。这对内存是一个非常大的开销,当内存不足以存储所有的Map output时就会出现OOM。

l 每一个Mapper都会产生Reducer number个shuffle文件,如果Mapper个数是1k,Reducer个数也是1k,那么就会产生1M个shuffle文件,这对于文件系统是一个非常大的负担。同时在shuffle数据量不大而shuffle文件又非常多的情况下,随机写也会严重降低IO的性能。

在Spark 0.8版本中,shuffle write采用了与RDD block write不同的方式,同时也为shuffle write单独创建了ShuffleBlockManager,部分解决了0.6和0.7版本中遇到的问题。

首先来看一下Spark 0.8的具体实现:

在这个版本中为shuffle write添加了一个新的类ShuffleBlockManager,由ShuffleBlockManager来分配和管理bucket。同时ShuffleBlockManager为每一个bucket分配一个DiskObjectWriter,每个write handler拥有默认100KB的缓存,使用这个write handler将Map output写入文件中。可以看到现在的写入方式变为buckets.writers(bucketId).write(pair),也就是说Map output的key-value pair是逐个写入到磁盘而不是预先把所有数据存储在内存中再整体flush到磁盘中去。

ShuffleBlockManager的代码如下所示:

Spark 0.8显著减少了shuffle的内存压力,现在Map output不需要先全部存储在内存中,再flush到硬盘,而是record-by-record写入到磁盘中。同时对于shuffle文件的管理也独立出新的ShuffleBlockManager进行管理,而不是与rdd cache文件在一起了。

但是这一版Spark 0.8的shuffle write仍然有两个大的问题没有解决:

l 首先依旧是shuffle文件过多的问题,shuffle文件过多一是会造成文件系统的压力过大,二是会降低IO的吞吐量。

l 其次虽然Map output数据不再需要预先在内存中evaluate显著减少了内存压力,但是新引入的DiskObjectWriter所带来的buffer开销也是一个不容小视的内存开销。假定有1k个Mapper和1k个Reducer,那么就会有1M个bucket,于此同时就会有1M个write handler,而每一个write handler默认需要100KB内存,那么总共需要100GB的内存。这样的话仅仅是buffer就需要这么多的内存,内存的开销是惊人的。当然实际情况下这1k个Mapper是分时运行的话,所需的内存就只有cores * reducer numbers * 100KB大小了。但是reducer数量很多的话,这个buffer的内存开销也是蛮厉害的。

为了解决shuffle文件过多的情况,Spark 0.8.1引入了新的shuffle consolidation以期显著减少shuffle文件的数量。

首先以图例来介绍一下shuffle consolidation的原理。

假定该job有4个Mapper和4个Reducer,有2个core,也就是能并行运行两个task。可以算出Spark的shuffle write共需要16个bucket,也就有了16个write handler。在之前的Spark版本中,每一个bucket对应的是一个文件,因此在这里会产生16个shuffle文件。

而在shuffle consolidation中每一个bucket并非对应一个文件,而是对应文件中的一个segment,同时shuffle consolidation所产生的shuffle文件数量与Spark core的个数也有关系。在上面的图例中,job的4个Mapper分为两批运行,在第一批2个Mapper运行时会申请8个bucket,产生8个shuffle文件;而在第二批Mapper运行时,申请的8个bucket并不会再产生8个新的文件,而是追加写到之前的8个文件后面,这样一共就只有8个shuffle文件,而在文件内部这有16个不同的segment。因此从理论上讲shuffle consolidation所产生的shuffle文件数量为C×R,其中C是Spark集群的core number,R是Reducer的个数。

需要注意的是当 M=C时shuffle consolidation所产生的文件数和之前的实现是一样的。

Shuffle consolidation显著减少了shuffle文件的数量,解决了之前版本一个比较严重的问题,但是writer handler的buffer开销过大依然没有减少,若要减少writer handler的buffer开销,只能减少Reducer的数量,但是这又会引入新的问题,下文将会有详细介绍。

3、Shuffle Fetch and Aggregator

Shuffle write写出去的数据要被Reducer使用,就需要shuffle fetcher将所需的数据fetch过来,这里的fetch包括本地和远端,因为shuffle数据有可能一部分是存储在本地的。Spark对shuffle fetcher实现了两套不同的框架:NIO通过socket连接去fetch数据;OIO通过netty server去fetch数据。分别对应的类是BasicBlockFetcherIterator和NettyBlockFetcherIterator。

在Spark 0.7和更早的版本中,只支持BasicBlockFetcherIterator,而BasicBlockFetcherIterator在shuffle数据量比较大的情况下performance始终不是很好,无法充分利用网络带宽,为了解决这个问题,添加了新的shuffle fetcher来试图取得更好的性能。都知道在hadoop MapReduce的shuffle过程中,shuffle fetch过来的数据会进行merge sort,使得相同key下的不同value按序归并到一起供Reducer使用,这个过程可以参看下图:

所有的merge sort都是在磁盘上进行的,有效地控制了内存的使用,但是代价是更多的磁盘IO。

那么Spark是否也有merge sort呢?

  首先虽然Spark属于MapReduce体系,但是对传统的MapReduce算法进行了一定的改变。Spark假定在大多数用户的case中,shuffle数据的sort不是必须的,比如word count,强制地进行排序只会使性能变差,因此,Spark并不在Reducer端做merge sort。

既然没有merge sort那Spark是如何进行reduce的呢?

  在Spark中存在aggregator,aggregator本质上是一个hashmap,它是以map output的key为key,以任意所要combine的类型为value的hashmap。当在做word count reduce计算count值的时候,它会将shuffle fetch到的每一个key-value pair更新或是插入到hashmap中(若在hashmap中没有查找到,则插入其中;若查找到则更新value值)。这样就不需要预先把所有的key-value进行merge sort,而是来一个处理一个,省下了外部排序这一步骤。但同时需要注意的是reducer的内存必须足以存放这个partition的所有key和count值,因此对内存有一定的要求。

  在上面word count的例子中,因为value会不断地更新,而不需要将其全部记录在内存中,因此内存的使用还是比较少的。考虑一下如果是group by key这样的操作,Reducer需要得到key对应的所有value。在Hadoop MapReduce中,由于有了merge sort,因此给予Reducer的数据已经是group by key了,而Spark没有这一步,因此需要将key和对应的value全部存放在hashmap中,并将value合并成一个array。可以想象为了能够存放所有数据,用户必须确保每一个partition足够小到内存能够容纳,这对于内存是一个非常严峻的考验。因此Spark文档中建议用户涉及到这类操作的时候尽量增加partition,也就是增加Mapper和Reducer的数量。

  增加Mapper和Reducer的数量固然可以减小partition的大小,使得内存可以容纳这个partition。但是在shuffle write中提到,bucket和对应于bucket的write handler是由Mapper和Reducer的数量决定的,task越多,bucket就会增加的更多,由此带来write handler所需的buffer也会更多。在一方面为了减少内存的使用采取了增加task数量的策略,另一方面task数量增多又会带来buffer开销更大的问题,因此陷入了内存使用的两难境地。

  为了减少内存的使用,只能将aggregator的操作从内存移到磁盘上进行,Spark社区也意识到了Spark在处理数据规模远远大于内存大小时所带来的问题。因此PR303提供了外部排序的实现方案。

Shuffle过程的更多相关文章

  1. mapReduce的shuffle过程

    http://www.jianshu.com/p/c97ff0ab5f49 总结shuffle 过程: map端的shuffle: (1)map端产生数据,放入内存buffer中: (2)buffer ...

  2. Hadoop学习笔记—10.Shuffle过程那点事儿

    一.回顾Reduce阶段三大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步骤,其中在Reduce阶段总共三个步骤,如下图所示: 其中,Step2.1就 ...

  3. MapReduce Shuffle过程

    MapReduce Shuffle 过程详解 一.MapReduce Shuffle过程 1. Map Shuffle过程 2. Reduce Shuffle过程 二.Map Shuffle过程 1. ...

  4. MapReduce:详解Shuffle过程(转)

    /** * author : 冶秀刚 * mail     : dennyy99@gmail.com */ Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapRedu ...

  5. MapReduce:详解Shuffle过程

    Shuffle过程,也称Copy阶段.reduce task从各个map task上远程拷贝一片数据,并针对某一片数据,如果其大小超过一定的阀值,则写到磁盘上,否则直接放到内存中. 官方的Shuffl ...

  6. Hadoop_10_shuffle02_详解Shuffle过程【来源网络】推荐更为详细

    网址:http://www.cnblogs.com/felixzh/p/4680808.html Shuffle过程,也称Copy阶段.reduce task从各个map task上远程拷贝一片数据, ...

  7. MapReduce:详解Shuffle过程

    Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑, ...

  8. MapReduce:Shuffle过程的流程

    Shuffle过程是MapReduce的核心,Shuffle描述着数据从map task输出到reduce task输入的这段过程. 1.map端

  9. shuffle 过程

    Shuffle描述着数据从map task输出到reduce task输入的这段过程(Shuffle的正常意思是洗牌或弄乱). 以下是官网的流程图: 从最基本的要求来说,我们对Shuffle过程的期望 ...

  10. Hadoop学习之shuffle过程

    转自:http://langyu.iteye.com/blog/992916,多谢分享,学习Hadopp性能调优的可以多关注一下 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方, ...

随机推荐

  1. mysql实现多实例

    > mariadb安装    yum install mariadb-server > 创建相关目录,及设置权限    mkdir /mysqldb; mkdir /mysqldb/{33 ...

  2. 使用rsync实现不同Linux服务器间目录同步

    实现目标:    A 服务器上 /opt/web 目录,与B服务器上 /opt/web目录实现同步.即:B主动与A进行同步.   OS: Reaht AS4   A Server  192.168.1 ...

  3. Web browser的发展史

        浏览器是个显示网页伺服器或档案系统内的HTML文件,并让用户与此些文件互动的一种软件.个人电脑上常见的网页浏览器包括微软的Internet Explorer.Moailla的Firefox.O ...

  4. Java中最常用的集合类框架之 HashMap

    一.HashMap的概述 HashMap可以说是Java中最常用的集合类框架之一,是Java语言中非常典型的数据结构.      HashMap是基于哈希表的Map接口实现的,此实现提供所有可选的映射 ...

  5. Android 展示控件之Surface、SurfaceView、SurfaceHolder及SurfaceHolder.Callback之间的关系

    一.Surface Surface在SDK的文档中的描述是这样的:Handle onto a raw buffer that is being managed by the screen compos ...

  6. 转转hybrid app web静态资源离线系统实践

    一.前言 目前的转转app是一个典型的hybrid app,采用的是业内主流的做法: 客户端内有大量业务页面使用webview内加载h5页面承载. 其优点是显而易见的,即:web页面上线频度满足快速迭 ...

  7. cpuset

    本文属于内核文档翻译,翻译时没有遵照原文,添加了一些作者的理解,目的不是为了替代内核文档,可以作为阅读内核文档的引子,作者鼓励读者阅读原有的内核文档.原文参考3.10.514内核文档cpuset.tx ...

  8. Lock wait timeout exceeded

    MySQL事务锁问题-Lock wait timeout exceeded问题: 一次ios在请求接口响应时间超长,耗时几十秒才返回错误提示,后台日志中出现Lock wait timeout exce ...

  9. JSON库的使用研究(三)

    怎么选择JSON库? 从整体测试结果来看,总结如下: 用于序列化.反序列的功能,数量量小,吞吐量不大于10000每秒的,选择gson: 用于解析JSON的,还是用Fastjson吧,虽然听说坑很多. ...

  10. python读取pdf文件

    pdfplumber简介 Pdfplumber是一个可以处理pdf格式信息的库.可以查找关于每个文本字符.矩阵.和行的详细信息,也可以对表格进行提取并进行可视化调试. 文档参考https://gith ...