matlab练习程序(局部加权线性回归)
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数。
而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型。
局部加权线性最小二乘就不需要我们预先知道待求解的模型,因为该方法是基于多个线性函数的叠加,最终只用到了线性模型。
计算线性模型时引入了一个加权函数:
来给当前预测数据分配权重,分配机制是:给距离近的点更高的权重,给距离远的点更低的权重。
公式中的k类似与高斯函数中的sigma。
当sigma变大时,函数变得矮胖,计算局部线性函数时更多的使用全局数据;
当sigma变小时,函数变得瘦高,计算局部线性函数时更多的使用局部数据。
代码如下:
clear all;
close all;
clc; x=(:0.1:)';
y=x.^+x+ +rand(length(x),)*;
plot(x,y,'.') sigma=0.1; %设置局部窗口,越大越使用全局数据,越小越使用局部数据
W=zeros(length(x));
C=[];
for i=:length(x)
for j=:length(x)
W(j,j)=exp(-((x(i)-x(j))^)/(*sigma^)); %权重矩阵
end XX=[x ones(length(x),)];
YY=y;
C=[C inv(XX'*W*XX)*XX'*W*YY]; %加权最小二乘,计算求得局部线性函数的系数 end re=diag(XX*C);
hold on;
plot(x,re);
结果如下:
可以看出,红色的局部线性函数最终拟合出了全局的数据。
不过该方法既然不需要知道模型,那我们如何预测未来的数据结果呢?
matlab练习程序(局部加权线性回归)的更多相关文章
- Locally weighted linear regression(局部加权线性回归)
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么 ...
- Locally Weighted Linear Regression 局部加权线性回归-R实现
局部加权线性回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问 ...
- 局部加权线性回归(Locally weighted linear regression)
首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比 ...
- matlab练习程序(加权最小二乘)
起本篇题目还是比较纠结的,原因是我本意打算寻找这样一个算法:在测量数据有比较大离群点时如何估计原始模型. 上一篇曲面拟合是假设测量数据基本符合均匀分布,没有特别大的离群点的情况下,我们使用最小二乘得到 ...
- 线性回归(最小二乘法、批量梯度下降法、随机梯度下降法、局部加权线性回归) C++
We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Beca ...
- 局部加权回归、欠拟合、过拟合(Locally Weighted Linear Regression、Underfitting、Overfitting)
欠拟合.过拟合 如下图中三个拟合模型.第一个是一个线性模型,对训练数据拟合不够好,损失函数取值较大.如图中第二个模型,如果我们在线性模型上加一个新特征项,拟合结果就会好一些.图中第三个是一个包含5阶多 ...
- Robust Locally Weighted Regression 鲁棒局部加权回归 -R实现
鲁棒局部加权回归 [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 算法参考文献: (1) Robust L ...
- 局部加权回归、欠拟合、过拟合 - Andrew Ng机器学习公开课笔记1.3
本文主要解说局部加权(线性)回归.在解说局部加权线性回归之前,先解说两个概念:欠拟合.过拟合.由此引出局部加权线性回归算法. 欠拟合.过拟合 例如以下图中三个拟合模型.第一个是一个线性模型.对训练数据 ...
- 线性回归 Linear regression(4) 局部加权回归
这篇文章将介绍过拟合和欠拟合的概念,并且介绍局部加权回归算法. 过拟合和欠拟合 之前在线性回归中,我们总是将单独的x作为我们的特征,但其实我们可以考虑将,甚至x的更高次作为我们的特征,那么我们通过线性 ...
随机推荐
- NetStandard;.netCore;FX(.netFrameWork)之间引用关系
.NetStandard;.netCore;FX(.NetFrameWork)之间引用关系 FX引用.NetCore:不通过 NetStandard引用.NetCore:不通过 .NetCor ...
- vue 关于图片路径的问题
在vue 中,当我们想加载assets中的图片,本人按照多年的开发经验会这样写,那是没问题的 <img src="../assets.1.jpg"/> 如果我要用v-b ...
- mysql 开发进阶篇系列 18 MySQL Server(innodb_buffer_pool_size)
从这篇开始,讲innodb存储引擎中,对于几个重要的服务器参数配置.这些参数以innodb_xx 开头. 1. innodb_buffer_pool_size的设置 这个参数定义了innodb存储引擎 ...
- mysql 开发进阶篇系列 4 SQL 优化(各种优化方法点)
1 通过handler_read 查看索引使用情况 如果索引经常被用到 那么handler_read_key的值将很高,这个值代表了一个行被索引值读的次数, 很低的值表明增加索引得到的性能改善不高,索 ...
- Socket网络编程基本介绍
一,socket的起源 socket一词的起源 在组网领域的首次使用是在1970年2月12日发布的文献IETF RFC33中发现的, 撰写者为Stephen Carr.Steve Crocker和Vi ...
- [转]Javascript中几种较为流行的继承方式
出处:http://www.jianshu.com/p/a6c005228a75 开篇 从'严格'意义上说,javascript并不是一门真正的面向对象语言.这种说法原因一般都是觉得javascrip ...
- 使用VSCode如何调试C#控制台程序_1
A-环境安装 https://www.microsoft.com/net/download 下载 .NET Core SDK Installer: https://www.microsoft.com/ ...
- [转]windows BLE编程 net winform 连接蓝牙4.0
本文转自:https://www.cnblogs.com/webtojs/p/9675956.html winform 程序调用Windows.Devices.Bluetoot API 实现windo ...
- Linq To Xml操作XML增删改查
对XML文件的操作在平时项目中经常要运用到,比如用于存放一些配置相关的内容:本文将简单运用Linq TO Xml对XML进行操作,主要讲解对XML的创建.加载.增加.查询.修改以及删除:重点在于类XD ...
- 爬虫应对js混淆的方法
大家做爬虫可能经常要跟js打交道.如果积累一定的经验肯定会遇到eval(....);这种js,很多新人可能慌了,woc这怎么办??????? 下面楼主给大家介绍一种方法简单,有效. F12 在Cons ...