题目描述

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过 n-1n−1 次合并之后, 就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为 11,并且已知果子的种类 数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有 33 种果子,数目依次为 11 , 22 , 99 。可以先将 11 、 22 堆合并,新堆数目为 33 ,耗费体力为 33 。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为 1212 ,耗费体力为 1212 。所以多多总共耗费体力 =3+12=15=3+12=15 。可以证明 1515 为最小的体力耗费值。

输入输出格式

输入格式:

共两行。
第一行是一个整数 n(1\leq n\leq 10000)n(1≤n≤10000) ,表示果子的种类数。

第二行包含 nn 个整数,用空格分隔,第 ii 个整数 a_i(1\leq a_i\leq 20000)ai​(1≤ai​≤20000) 是第 ii 种果子的数目。

输出格式:

一个整数,也就是最小的体力耗费值。输入数据保证这个值小于 2^{31}231 。

输入输出样例

输入样例#1: 复制

3
1 2 9
输出样例#1: 复制

15

说明

对于30%的数据,保证有n \le 1000n≤1000:

对于50%的数据,保证有n \le 5000n≤5000;

对于全部的数据,保证有n \le 10000n≤10000。

用优先队列,越小的整数的优先级越大。当队列的大小为0时就打印。

C++代码:

#include<iostream>
#include<algorithm>
#include<queue>
#include<cstdio>
using namespace std;
const int maxn = ;
int a[maxn];
int main(){
int n;
priority_queue<int,vector<int>, greater<int> >pq;
scanf("%d",&n);
for(int i = ; i < n; i++){
scanf("%d",&a[i]);
pq.push(a[i]);
}
int sum = ;
while(true){
int x = pq.top();
pq.pop();
int y = pq.top();
pq.pop();
int z = x + y;
sum = sum + z;
if(pq.empty())
break;
pq.push(z);
}
printf("%d\n",sum);
return ;
}

(贪心 优先队列)P1090合并果子 洛谷的更多相关文章

  1. 洛谷【P1090】合并果子&&洛谷【P1334】瑞瑞的木板

    浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 合并果子题目传送门:https://www.luogu.org/problemnew/show/P1 ...

  2. BZOJ 1724 [Usaco2006 Nov]Fence Repair 切割木板:贪心 优先队列【合并果子】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1724 题意: 你要将一块长木板切成n段,长度分别为a[i](长木板的长度 = ∑ a[i] ...

  3. 堆排序 P1090 合并果子

    P1090 合并果子 本题要用到堆 一个小根堆 每次取出两堆,合并成一堆,为了让多多花费体力最少,我们要尽量少的重复大堆的合并,因此每次合并完以后,要把新的一坨放到堆里排一排,维护一个堆 有必要强调一 ...

  4. 洛谷 P1090合并果子【贪心】【优先队列】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  5. 洛谷P1090——合并果子(贪心)

    https://www.luogu.org/problem/show?pid=1090 题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合 ...

  6. 洛谷P1090 合并果子【贪心】

    在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可以看出,所 ...

  7. 堆学习笔记(未完待续)(洛谷p1090合并果子)

    上次讲了堆,别人都说极其简单,我却没学过,今天又听dalao们讲图论,最短路又用堆优化,问懂了没,底下全说懂了,我???,感觉全世界都会了堆,就我不会,于是我决定补一补: ——————来自百度百科 所 ...

  8. 【洛谷P1090 合并果子】

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

  9. [NOIP2004] 提高组 洛谷P1090 合并果子

    题目描述 在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和.可 ...

随机推荐

  1. redis知识汇总

    redis是一个内存数据库,使用key-value形式在内存中管理数据. 一.redis使用场景 1.热数据存储.对于需要频繁读写的数据,可以放到redis中,不用频繁的请求数据库.再设置策略持久化到 ...

  2. Nginx 网络事件

    L27-29 应用层(如浏览器等一系列组成的发送get请求) 传输层 系统内核打开一个端口将客户端IP及端口和服务端IP及端口记录下来一并传输到网络层 网络层 打包后到链路层 再到客户端路由器至广域网

  3. java8的版本对组合式异步编程

    讨论了Java 8中的函数式数据处理,它可以将对集合数据的多个操作以流水线的方式组合在一起.本节继续讨论Java 8的新功能,主要是一个新的类CompletableFuture,它是对65节到83节介 ...

  4. 大佬RQY真的强

    今天听了大佬RQY的讲话,做一下总结吧(这里就不吹了,dalao不需要吹) 第一点,基础真的很重要.什么是基础呢?就是你今年学的觉得难到爆啊什么鬼题啊这是我学过的最zz的东西啊怎么会有这种东西啊&am ...

  5. 欧拉筛,线性筛,洛谷P2158仪仗队

    题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...

  6. 概率DP自学

    转自https://blog.csdn.net/zy691357966/article/details/46776199 zy691357966的blog 有关概率和期望问题的研究 摘要 在各类信息学 ...

  7. 安卓Q | 诸多本地文件找不到?应用文件存储空间沙箱化适配指导

    上期我们针对Android Q 版本中对设备存储空间进行的限制.新特性变更引发的兼容性问题及原因分析推出了<安卓 Q | 8大场景全面解析应用存储沙箱化>文章,本期文章我们将手把手指导各位 ...

  8. html图像、绝对路径和相对路径,链接

    html图像 <img>标签可以在网页上插入一张图片,它是独立使用的标签,通过"src"属性定义图片的地址,通过"alt"属性定义图片加载失败时显示 ...

  9. centos7搭建ELK Cluster集群日志分析平台(三):Kibana

    续  centos7搭建ELK Cluster集群日志分析平台(一) 续  centos7搭建ELK Cluster集群日志分析平台(二) 已经安装好elasticsearch 5.4集群和logst ...

  10. 在centos7下用http搭建配置svn服务

    应用场景:SVN是Subversion的简称,是一个开放源代码的版本控制系统. 安装环境:centos7  //已关闭 Selinux和 Firewall 配置步骤: 1. 安装HTTP和SVN相关软 ...