BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并
原文链接http://www.cnblogs.com/zhouzhendong/p/8683831.html
题目传送门 - BZOJ4025
题意
有$n$个点,有$m$条边。有$T$个时间段。其中第$i$条边连接节点$x_i,y_i$,并且在$start_i$时刻出现,在$end_i$时刻消失。问每一个时刻的图是不是二分图。
$n\leq 10^5,m\leq 2\times 10^5,T\leq 10^5$
题解
真是一道好题。
做这题我才发现我从来没写过按秩合并的并查集QAQ。
先考虑按照时间二分。
对于某一段时间,我们可以把所有在当前时间段一直出现的边连起来。这个可以用按秩合并的带权并查集维护。(注意子程序退出的时候要撤销所有操作)
如果在加边的过程中,发现冲突,那么该区间全部都是NO了。
否则把除了完全覆盖当前区间的边之外的,对左区间有关的扔到左边,对右区间有关的扔到右边。然后递归子区间处理。
注意区间长度为1的时候不要再递归下去了,会RE的。
具体实现参见代码。
我们来分析一下为什么复杂度是对的。
首先考虑空间复杂度。
考虑每一层递归的时候最多有$O(n)$条边,最多有$O(\log n)$层,所以空间复杂度为$O(n\log n)$。
考虑时间复杂度。
我们发现主要的复杂度在边的处理上。一条边在多少个时间段被连接,就是他对总时间复杂度的贡献。
显然每一条边在同一个区间只会被连接一下,但是要按秩合并并查集,所以单次复杂度为$O(\log n)$。考虑到一个边最多在$O(\log n)$个区间被连接(和线段树区间覆盖的原理差不多吧)。所以每一条边最多贡献$O(\log^2 n)$的时间复杂度。所以有$m$条边,显然$m$的上限和$n$同阶,当他是$n$就可以了,所以总的时间复杂度为$O(n\log^2 n)$。
代码
#include <bits/stdc++.h>
using namespace std;
const int N=200005;
struct Edge{
int x,y,s,t;
void get(){
scanf("%d%d%d%d",&x,&y,&s,&t),s++;
}
}e[N];
int n,m,T,ans[N];
vector <int> x;
struct UFset{
int n,fa[N],depth[N],d[N],stack[N],top;
void init(int _n){
n=_n;
for (int i=1;i<=n;i++)
fa[i]=i;
memset(depth,0,sizeof depth);
memset(d,0,sizeof d);
top=0;
}
int getf(int x){
while (fa[x]!=x)
x=fa[x];
return x;
}
int getdis(int x){
int ans=0;
while (fa[x]!=x)
ans^=d[x],x=fa[x];
return ans;
}
bool Merge(int x,int y){
int D=getdis(x)^getdis(y)^1;
x=getf(x),y=getf(y);
if (x==y)
return D==0;
if (depth[x]<depth[y])
swap(x,y);
if (depth[x]==depth[y])
depth[x]++,stack[++top]=-x;
fa[y]=x,d[y]=D,stack[++top]=y;
return 1;
}
void Split(int time){
while (top>time){
int x=stack[top--];
if (x<0)
depth[-x]--;
else
fa[x]=x,d[x]=0;
}
}
}s;
void solve(int L,int R,vector <int> &now){
if (now.size()==0)
return;
vector <int> Lpart,Rpart;
Lpart.clear(),Rpart.clear();
int time=s.top,mid=(L+R)>>1;
for (int i=0;i<now.size();i++){
int id=now[i];
if (e[id].s<=L&&e[id].t>=R){
if (!s.Merge(e[id].x,e[id].y)){
for (int j=L;j<=R;j++)
ans[j]=0;
s.Split(time);
return;
}
}
else {
if (e[id].t<=mid)
Lpart.push_back(id);
else if (e[id].s>mid)
Rpart.push_back(id);
else if (e[id].s<=mid&&e[id].t>mid)
Lpart.push_back(id),Rpart.push_back(id);
}
}
if (L==R){
s.Split(time);
return;
}
solve(L,mid,Lpart);
solve(mid+1,R,Rpart);
s.Split(time);
}
int main(){
scanf("%d%d%d",&n,&m,&T);
x.clear();
for (int i=1;i<=m;i++)
e[i].get(),x.push_back(i);
for (int i=1;i<=T;i++)
ans[i]=1;
s.init(n);
solve(1,T,x);
for (int i=1;i<=T;i++)
puts(ans[i]?"Yes":"No");
return 0;
}
BZOJ4025 二分图 分治 并查集 二分图 带权并查集按秩合并的更多相关文章
- 并查集模板 && 带权并查集模板
不带权: ]; void init(void) { ;i<=n;i++) f[i]=i; } int fd(int x) { return f[x]==x?x:fd[x]=fd(f[x]); } ...
- 浅谈并查集&种类并查集&带权并查集
并查集&种类并查集&带权并查集 前言: 因为是学习记录,所以知识讲解+例题推荐+练习题解都是放在一起的qvq 目录 并查集基础知识 并查集基础题目 种类并查集知识 种类并查集题目 并查 ...
- BZOJ4025 二分图 线段树分治、带权并查集
传送门 如果边不会消失,那么显然可以带权并查集做(然后发现自己不会写带权并查集) 但是每条边有消失时间.这样每一条边产生贡献的时间对应一段区间,故对时间轴建立线段树,将每一条边扔到线段树对应的点上. ...
- hdu 1829 &poj 2492 A Bug's Life(推断二分图、带权并查集)
A Bug's Life Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- CodeForces - 687D: Dividing Kingdom II (二分图&带权并查集)
Long time ago, there was a great kingdom and it was being ruled by The Great Arya and Pari The Great ...
- UVA - 10004 Bicoloring(判断二分图——交叉染色法 / 带权并查集)
d.给定一个图,判断是不是二分图. s.可以交叉染色,就是二分图:否则,不是. 另外,此题中的图是强连通图,即任意两点可达,从而dfs方法从一个点出发就能遍历整个图了. 如果不能保证从一个点出发可以遍 ...
- codeforces 687D Dividing Kingdom II 带权并查集(dsu)
题意:给你m条边,每条边有一个权值,每次询问只保留编号l到r的边,让你把这个图分成两部分 一个方案的耗费是当前符合条件的边的最大权值(符合条件的边指两段点都在一个部分),问你如何分,可以让耗费最小 分 ...
- A Bug's Life POJ - 2492 (种类或带权并查集)
这个题目的写法有很多,用二分图染色也可以写,思路很好想,这里我们用关于并查集的两种写法来做. 题目大意:输入x,y表示x和y交配,然后判断是否有同性恋. 1 带权并查集: 我们可以用边的权值来表示一种 ...
- Codeforces 1499G - Graph Coloring(带权并查集+欧拉回路)
Codeforces 题面传送门 & 洛谷题面传送门 一道非常神仙的题 %%%%%%%%%%%% 首先看到这样的设问,做题数量多一点的同学不难想到这个题.事实上对于此题而言,题面中那个&quo ...
随机推荐
- tp5结合FormData实现ajax文件上传
或者使用: 下面使用jquery.form.js的表单插件来提交表单
- 2018 github热门项目
github流行的几个项目,我们来学习一下. 1. developer-roadmap-chinese image.png 项目简介:2018年web程序员路线中文版, 这个仓库里包含了一些前端,后端 ...
- PID控制器开发笔记之一:PID算法原理及基本实现
在自动控制中,PID及其衍生出来的算法是应用最广的算法之一.各个做自动控制的厂家基本都有会实现这一经典算法.我们在做项目的过程中,也时常会遇到类似的需求,所以就想实现这一算法以适用于更多的应用场景. ...
- python 知识梳理
1.数据类型:字符串,列表,元组,字典,集合.处理每种数据类型的函数 2.判断与循环部分 3.高级函数:lambda,map,reduce,filter 4.自定义模块以及第三方模块 5.函数式编程 ...
- U盘权限不足,只读文件系统
https://blog.csdn.net/baocheng_521/article/details/77161791 用第一种方式成功
- 后RCNN时代的物体检测及实例分割进展
https://mp.weixin.qq.com/s?__biz=MzA3MzI4MjgzMw==&mid=2650736740&idx=3&sn=cdce446703e69b ...
- java多线程快速入门(二十二)
线程池的好处: 避免我们过多的去new线程,new是占资源的(GC主要堆内存) 提高效率 避免浪费资源 提高响应速度 作用:会把之前执行某个线程完毕的线程不会释放掉会留到线程池中给下一个调用的线程直接 ...
- hdu4612 卡cin e-DCC缩点
/* 给定无向图,求加入一条边后最少剩下多少桥 */ #include<bits/stdc++.h> using namespace std; #define maxn 200005 #d ...
- nodejs 如何获取页面get、post传递过来的参数
如果是get传递参数,可以直接使用 request.query.name 如果是post 需要借助body-parser 首先引入bodyParser = require('body-parser') ...
- python 给对象绑定属性和方法和__slots__的使用
# 以c语言为主是静态语言,运行之前先编译,在运行的过程中不允许编辑代码# 在运行的过程中,可以改变,可以添加属性,就是属于动态语言(python) # python动态的添加属性以及方法class ...